International Journal of Biological Macromolecules最新文献

筛选
英文 中文
Improving the performance of polylactic acid/polypropylene/cotton stalk fiber composites with epoxidized soybean oil as a high efficiency plasticizer. 用环氧大豆油作为高效增塑剂提高聚乳酸/聚丙烯/棉秆纤维复合材料的性能。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-18 DOI: 10.1016/j.ijbiomac.2024.137814
Zhiwei Li, Jin Shang, Abdukeyum Abdurexit, Ruxangul Jamal, Tursun Abdiryim, Erman Su, Jin Wei
{"title":"Improving the performance of polylactic acid/polypropylene/cotton stalk fiber composites with epoxidized soybean oil as a high efficiency plasticizer.","authors":"Zhiwei Li, Jin Shang, Abdukeyum Abdurexit, Ruxangul Jamal, Tursun Abdiryim, Erman Su, Jin Wei","doi":"10.1016/j.ijbiomac.2024.137814","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137814","url":null,"abstract":"<p><p>Polylactic acid (PLA) can serve as a biodegradable alternative to traditional petroleum-based plastics, but its poor impact resistance and high production costs limit its applications. In this study, different contents of epoxidized epoxy soybean oil (ESO) were added as plasticizer to melt blend with polylactic acid (PLA), polypropylene (PP) and cotton stalk fiber (CSF), examining its impact on the mechanical properties, thermal stability, microstructure, and crystallization behavior of the blends. The results indicated that ESO reacted with PLA and CSF to form branched polymers and microgels. With increasing ESO content, the blends exhibited increased initial thermal decomposition temperature, impact strength, and elongation at break, while stiffness, maximum decomposition rate, and crystallinity decreased. When the mass ratio of CSF to ESO was 2:1, the notch impact strength and elongation at break of PLA/PP/CSF/ESO blends were 1.63 times and 1.98 times higher than those of PLA/PP/CSF blends, respectively. Moreover, a reduction in surface grooves of CSF and formation of a gel layer were observed. Importantly, this study opens an effective new pathway for the utilization of waste natural fibers and the widespread application of biodegradable composite materials, contributing to environmental protection, resource conservation, and cost reduction.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137814"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. 通过重新编程双组分信号电路,创建正交和通用的自动诱导基因表达平台,以高效生产工业酶。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-18 DOI: 10.1016/j.ijbiomac.2024.137781
Wenjing Cui, Xinyu Lin, Ruichun Hu, Huating Chen, Peiyuan Xiao, Mengrui Tao, Feiya Suo, Laichuang Han, Zhemin Zhou
{"title":"Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes.","authors":"Wenjing Cui, Xinyu Lin, Ruichun Hu, Huating Chen, Peiyuan Xiao, Mengrui Tao, Feiya Suo, Laichuang Han, Zhemin Zhou","doi":"10.1016/j.ijbiomac.2024.137781","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137781","url":null,"abstract":"<p><p>Bacterial gene expression systems play a crucial role in producing valuable biological macromolecules, such as recombinant proteins and polysaccharides. However, traditional inducible gene systems have limitations that need costly chemical inducers that can harm the host. To address these challenges, a novel peptide-activated auto-inducible gene expression system was developed in Bacillus subtilis, leveraging Accessory gene regulatory system (Agr), a two-component signal system, from Staphylococcus aureus to trigger gene expression in response to an auto-inducible peptide (AIP). This system mimics a cell density-dependent regulatory mechanism, allowing for the intuitive activation of gene expression as accumulation of AIP. By precisely tuning the level of AIP, the auto-induction time was successfully delayed, however, at the expense of slightly reducing the strength of effector promoter P3, thus decreasing level of output expression. Furthermore, modulation of the stoichiometry of sensor protein AgrC allowed for fine-tuning of the auto-induction time, temporal dynamics, and expression levels. The robustness of the system was improved by strengthening P3 while maintaining the delayed auto-induction time. The versatility and efficacy of the system was demonstrated by the efficient production of various industrial enzymes. This study paves the way for the application of bacterial two-component signal systems to design synthetic gene circuits.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137781"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies. 甲基纤维素在水介质中的凝胶化和后凝胶化机制:1H NMR 和动态压缩流变学研究。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-18 DOI: 10.1016/j.ijbiomac.2024.137725
Ratan Pal Singh, Ashish Sharma, Abdul Selim, Patit Paban Kundu, Govindasamy Jayamurugan
{"title":"Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: <sup>1</sup>H NMR and dynamic compressive rheological studies.","authors":"Ratan Pal Singh, Ashish Sharma, Abdul Selim, Patit Paban Kundu, Govindasamy Jayamurugan","doi":"10.1016/j.ijbiomac.2024.137725","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137725","url":null,"abstract":"<p><p>Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. <sup>1</sup>H and <sup>13</sup>C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137725"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vaterite-type calcium carbonate and aminopropyltriethoxysilane-modified cellulose nanofibrils for preservation of aged paper. 用于保存老化纸张的aterite 型碳酸钙和氨丙基三乙氧基硅烷改性纤维素纳米纤维。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-18 DOI: 10.1016/j.ijbiomac.2024.137824
Jiayun Tang, Weiming Zhang, Shan Li, Maolin Dong, Lihua Jiang, Sixian Hou, Yong Qin
{"title":"Vaterite-type calcium carbonate and aminopropyltriethoxysilane-modified cellulose nanofibrils for preservation of aged paper.","authors":"Jiayun Tang, Weiming Zhang, Shan Li, Maolin Dong, Lihua Jiang, Sixian Hou, Yong Qin","doi":"10.1016/j.ijbiomac.2024.137824","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137824","url":null,"abstract":"<p><p>Deacidification and structural reinforcement are critically important for the long-term preservation of paper cultural relics. In this study, a novel approach is presented to synergistically combine highly reactive vaterite-type calcium carbonate with aminopropyltriethoxysilane-modified cellulose nanofibrils (NH<sub>2</sub>-CNFs) for the restoration of aged paper. Employed as a deacidification agent, vaterite demonstrated superior efficacy at a low dosage in comparison with commercially available calcite-type calcium carbonate. Concurrently, the carboxylate content of NH<sub>2</sub>-CNFs was reduced, enhancing its hydrophobicity and thermal stability. A comprehensive characterization of both vaterite and NH<sub>2</sub>-CNFs was conducted using multiple analytical techniques. Upon application of this restoration system to aged paper samples, the pH and alkaline reserve were elevated to 8.05 and 0.637 mol/kg, respectively. The tensile strength of the paper sample was augmented by 15 %, while folding endurance and tearing resistance were enhanced by 139 % and 66 %, respectively. Notably, the integration of vaterite exhibited no deleterious impact on the mechanical properties of the paper substrate. Additionally, this treatment imparted a substantial anti-aging effect, as evidenced by the results of dry heat and UV-irradiation aging. Consequently, this research introduces a novel and efficacious methodology for the restoration of aged paper, offering promising implications for the conservation of historical documents.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137824"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of soybean isolate protein/xanthan gum/agar-Lycium ruthenicum anthocyanins intelligent indicator films and its application in mutton preservation. 大豆分离蛋白/黄原胶/琼脂-芸苔素花青素智能指示膜的制备及其在羊肉保鲜中的应用
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137751
Bing Liu, Jie Gao, Xiaochun Liu, Xinmiao Zhang, Xinyu Zeng, Xinguo Zhang, Ping Zhao
{"title":"Preparation of soybean isolate protein/xanthan gum/agar-Lycium ruthenicum anthocyanins intelligent indicator films and its application in mutton preservation.","authors":"Bing Liu, Jie Gao, Xiaochun Liu, Xinmiao Zhang, Xinyu Zeng, Xinguo Zhang, Ping Zhao","doi":"10.1016/j.ijbiomac.2024.137751","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137751","url":null,"abstract":"<p><p>The preparation of intelligent indicator films containing anthocyanins and their utilization for real-time monitoring of meat freshness represents a prominent research topic of food packaging. In this study, anthocyanins (ALR) were extracted from Lycium ruthenicum (LR) using solvent extraction. Subsequently, these anthocyanins were incorporated into films composed of soybean isolate protein (SPI), xanthan gum (XG) and agar, resulting in SPI/XG/Agar-ALR pH-responsive intelligent indicator films. The physical properties, structural characterization and application in mutton preservation were evaluated to identify the intelligent indicator films with the optimal addition ratio of ALR. The results indicated that the SPI/XG/Agar-5 % films exhibited exceptional performance in terms of thickness, mechanical properties, water vapor transmission rate, oxygen transmission rate and light transmission rate. Scanning electron microscope observations revealed that the SPI/XG/Agar-5 % films possessed a smooth and flat surface, while fourier transform infrared spectroscopy analysis confirmed their excellent compatibility. The DPPH radical scavenging rate of the SPI/XG/Agar-5 % film reached 80.75 ± 0.63 %. When applied to the preservation of mutton, the SPI/XG/Agar-5 % film significantly extended the shelf life and effectively monitored the freshness of the meat. This study not only broadens the application scope of Lycium ruthenicum anthocyanins but also provides a foundation for the development of smart packaging materials.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137751"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the role of integrating signal peptides into natural collagen on modulating cancer cell adhesion. 揭示将信号肽整合到天然胶原蛋白中对调节癌细胞粘附力的作用。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137808
Yuanjing Hou, Fang Li, Wei Liu, Ruiming Guo, Hui Wu, Siying Huang, Chengzhi Xu, Lian Zhu, Juntao Zhang, Benmei Wei, Haibo Wang
{"title":"Unraveling the role of integrating signal peptides into natural collagen on modulating cancer cell adhesion.","authors":"Yuanjing Hou, Fang Li, Wei Liu, Ruiming Guo, Hui Wu, Siying Huang, Chengzhi Xu, Lian Zhu, Juntao Zhang, Benmei Wei, Haibo Wang","doi":"10.1016/j.ijbiomac.2024.137808","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137808","url":null,"abstract":"<p><p>The signal peptides GVMGFO and GFOGER exhibit differential binding affinities towards Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and HT-1080 human fibrosarcoma cells, respectively, which in turn modulate the cell adhesion properties of natural collagen. GVMGFO demonstrates a more potent interaction with discoidin domain receptor 1(DDR1)-expressing MCF-7 cells, whereas GFOGER preferentially binds to the integrin α2β1 present on HT-1080 cells. The integration of GVMGFO into natural collagen through direct doping or crosslinking markedly enhances its association with MCF-7 cells, especially when optimal peptide concentrations and blending ratios are utilized, indicating a synergistic effect. This augmented adhesion is attributed to specific binding at the DDR1-collagen interface, facilitated by a constellation of amino acids within the collagen scaffold engaging with the DDR1 discoidin (DS) domain through polar interactions and hydrogen bonding. Conversely, the incorporation of GFOGER into natural collagen through co-assembling or crosslinking leads to a progressive increase in adherence to HT-1080 cells, as evidenced by the peptide's affinity for integrin α2β1. These findings advance the design of collagen-based biomaterials for targeted cellular interactions in the medical, pharmaceutical, and enhance our understanding of the molecular mechanisms governing peptide-collagen mediated cell adhesion processes.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137808"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A halogen-free flame retardant with P/N and optimization for cotton fabrics tensile properties. 一种无卤阻燃剂,具有 P/N 和优化棉织物的拉伸性能。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137662
Jiaxi Luan, Chen Chen, Fengying Lan, Gongze Ji, Chaohong Dong, Zhou Lu
{"title":"A halogen-free flame retardant with P/N and optimization for cotton fabrics tensile properties.","authors":"Jiaxi Luan, Chen Chen, Fengying Lan, Gongze Ji, Chaohong Dong, Zhou Lu","doi":"10.1016/j.ijbiomac.2024.137662","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137662","url":null,"abstract":"<p><p>Cotton fibers' flammability and rapid combustion greatly restrict their usage in industries that require higher flame retardancy. Phosphorus and nitrogen-based flame retardants are frequently employed in the textile industry to consolidate the flame resistance of cotton materials. To consolidate flame retardant performance, a novel flame retardant named HPAPU was synthesized by combining 3-hydroxyphenylphosphinylpropionic acid, 1,6-hexanediamine, phosphoric acid, and urea. The structure of the products at each step was analyzed using Fourier transform infrared spectroscopy. In addition, the NMR was utilized to confirm that it was successfully synthesized. In order to evaluate the flame retardancy of HPAPU-treated cotton fabrics, the limiting oxygen index (LOI) was measured. The results showed that the LOI of the cotton fabric with 27.5 % weight gain was 38.5 %, which is a significant increase compared to the pure cotton fabric. According to the cone calorimeter test, the HPAPU-treated cotton fabrics showed a decrease in 86.6 % in peak heat release rate and 41.67 % in peak total heat release rate compared with unprocessed samples. In the tensile test, we found that increasing the flame-retardant concentration can improve the fabrics' tensile strength.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137662"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem. 外源硅通过激活盐胁迫和干旱胁迫下甘草茎的非结构性碳水化合物和结构性碳水化合物代谢,提高了细胞壁的稳定性。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137817
Yi Li, Wenjin Zhang, Yufang Huang, Gaochang Cui, Xinhui Zhang
{"title":"Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem.","authors":"Yi Li, Wenjin Zhang, Yufang Huang, Gaochang Cui, Xinhui Zhang","doi":"10.1016/j.ijbiomac.2024.137817","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137817","url":null,"abstract":"<p><p>The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137817"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulation of exopolysaccharide produced by Lacticaseibacillus rhamnosus ZFM216 in cyclophosphamide-induced immunosuppressed mice by modulating gut microbiota. 通过调节肠道微生物群,鼠李糖乳杆菌 ZFM216 产生的外多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137619
Liang Chen, Dong Wang, Wei Liu, Shaobo Zhou, Qing Gu, Tao Zhou
{"title":"Immunomodulation of exopolysaccharide produced by Lacticaseibacillus rhamnosus ZFM216 in cyclophosphamide-induced immunosuppressed mice by modulating gut microbiota.","authors":"Liang Chen, Dong Wang, Wei Liu, Shaobo Zhou, Qing Gu, Tao Zhou","doi":"10.1016/j.ijbiomac.2024.137619","DOIUrl":"10.1016/j.ijbiomac.2024.137619","url":null,"abstract":"<p><p>This study investigated the immunoregulatory activity of exopolysaccharides (EPS) produced by Lacticaseibacillus rhamnosus ZFM216 in immunosuppressed mice induced by cyclophosphamide (CTX). The results showed that EPS treatment effectively improved the body weight, immune organ index and splenic lymphocyte proliferation. EPS also mitigated the damage of immune organs, restored intestinal morphology, and regulated the levels of serum hemolysin and cytokines (e.g. TNF-α, INF-γ and IL-10). EPS promoted the release of NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 cells, however, such effect was inhibited in the presence of inhibitors of TLR4 and MAPKs signaling pathways-related proteins, confirming that EPS achieved the immunomodulation by activating these two signaling pathways. Additionally, EPS, as a prebiotic, effectively improved the diversity of microbial communities, regulated the relative abundance of dominant microbial communities, restored CTX-induced gut microbiota dysbiosis, and promoted the production of short chain fatty acids (SCFAs) in the gut of mice. Thus, immunoregulatory effect of EPS could be attributed to its good ability to modulate the gut microbiota. EPS produced by L. rhamnosus ZFM216 has promising application as an ingredient of functional foods due to its potent probiotic effect.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137619"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphiphilic pH-responsive core-shell nanoparticles can increase the performances of cellulose-based drug delivery systems. 两亲性 pH 响应核壳纳米粒子可提高纤维素类给药系统的性能。
IF 7.7 1区 化学
International Journal of Biological Macromolecules Pub Date : 2024-11-17 DOI: 10.1016/j.ijbiomac.2024.137659
Elisa Lacroce, Giuseppe Nunziata, Francesca Cianniello, Emanuele Limiti, Alberto Rainer, Francesco Briatico Vangosa, Alessandro Sacchetti, Mattia Sponchioni, Filippo Rossi
{"title":"Amphiphilic pH-responsive core-shell nanoparticles can increase the performances of cellulose-based drug delivery systems.","authors":"Elisa Lacroce, Giuseppe Nunziata, Francesca Cianniello, Emanuele Limiti, Alberto Rainer, Francesco Briatico Vangosa, Alessandro Sacchetti, Mattia Sponchioni, Filippo Rossi","doi":"10.1016/j.ijbiomac.2024.137659","DOIUrl":"10.1016/j.ijbiomac.2024.137659","url":null,"abstract":"<p><p>Polymer and nanoparticles (NPs) together are able to form nanocomposite materials that combine the beneficial properties of the traditional single systems. In this work, we propose a stimuli-responsive nanocomposite system which combines pH-responsive NPs with cellulose. Ring opening polymerization (ROP) followed by two reversible addition-fragmentation chain transfer (RAFT) polymerization steps were performed to synthetize ((PHEMA-graft-LA<sub>12</sub>)-co-PMAA)-b-PDEGMA copolymer characterized by tailored molecular weights and low polydispersity values. Uniform NPs were obtained by nanoprecipitation of the so-obtained copolymer in water. Moreover, drug release studies (using rhodamine b, fluorescein isothiocyanate, pyrene and 5-fluorouracil) at different pHs demonstrated the pH-responsivity of NPs, revealing a significant improvement of hydrophobic molecules release at acidic conditions. In vitro tests verified the biocompatibility of NPs and the efficacy in decreasing cancer cell viability. Finally, NPs were loaded into hydroxypropylmethyl-cellulose-C<sub>12</sub> matrix to obtain the final polymer-NPs composite system. The composite systems showed the ability to sustain the release of low steric hindrance drugs loaded with NPs and high steric hindrance ones loaded within the polymeric network. Overall, the proposed pH-responsive drug delivery system represents a co-delivery device which could be applied for localized treatment in different combined therapeutic program.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137659"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信