Amit Kumar , Shaik Sameer Basha , Mukilarasi B , Vimalraj Selvaraj , Pijush Ghosh , Swathi Sudhakar
{"title":"Leveraging cancer microenvironment pH shift for actuation-induced multidrug release from chitosan/carboxymethyl cellulose bilayer film","authors":"Amit Kumar , Shaik Sameer Basha , Mukilarasi B , Vimalraj Selvaraj , Pijush Ghosh , Swathi Sudhakar","doi":"10.1016/j.ijbiomac.2025.144701","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we leverage the pH shift of the tumor microenvironment to achieve controlled, multidrug release from an implantable, pH-responsive bilayer film composed of chitosan (CS) and carboxymethyl cellulose (CMC). Drug release is driven by out-of-plane actuation, where curvature is induced in response to acidic pH, serving as a physiological stimulus. The kinetics of release are modulated by the degree of curvature and the rate of actuation at a given pH. This system enables programmable delivery of a combination of cisplatin (Cis), 5-fluorouracil (5-Fu), and quercetin (Que), targeting multiple cancer pathways to combat drug resistance. In vitro studies with MDA-MB-231 breast cancer cells demonstrated a four-fold increase in cytotoxicity compared to individual drugs, attributed to synergistic effects and controlled release. Additionally, ex-ovo chick chorioallantoic membrane (CAM) assays confirmed the system's antiangiogenic potential, with significant downregulation of key markers, including Vascular Endothelial Growth Factor A (VEGFA), Fibroblast Growth Factor 2 (FGF2), and Angiopoietin 1 (ANG1). Overall, this platform offers a promising strategy for site-specific, sustained delivery of combination therapies in complex cancer environments.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"316 ","pages":"Article 144701"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025052535","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we leverage the pH shift of the tumor microenvironment to achieve controlled, multidrug release from an implantable, pH-responsive bilayer film composed of chitosan (CS) and carboxymethyl cellulose (CMC). Drug release is driven by out-of-plane actuation, where curvature is induced in response to acidic pH, serving as a physiological stimulus. The kinetics of release are modulated by the degree of curvature and the rate of actuation at a given pH. This system enables programmable delivery of a combination of cisplatin (Cis), 5-fluorouracil (5-Fu), and quercetin (Que), targeting multiple cancer pathways to combat drug resistance. In vitro studies with MDA-MB-231 breast cancer cells demonstrated a four-fold increase in cytotoxicity compared to individual drugs, attributed to synergistic effects and controlled release. Additionally, ex-ovo chick chorioallantoic membrane (CAM) assays confirmed the system's antiangiogenic potential, with significant downregulation of key markers, including Vascular Endothelial Growth Factor A (VEGFA), Fibroblast Growth Factor 2 (FGF2), and Angiopoietin 1 (ANG1). Overall, this platform offers a promising strategy for site-specific, sustained delivery of combination therapies in complex cancer environments.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.