Fuel Processing Technology最新文献

筛选
英文 中文
Support effect in Ni-based catalysts for methane steam reforming: Role of MxOy-Al2O3 (M = Ni, Mg, Co) supports for enhanced catalyst stability 甲烷蒸汽重整Ni基催化剂的支撑效应:MxOy-Al2O3 (M = Ni, Mg, Co)支撑对提高催化剂稳定性的作用
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-09-08 DOI: 10.1016/j.fuproc.2025.108325
Yi Lin , Zaixing Wang , Lina Tang , Shi Jiang , Yu Guo , Xiaoqin Liu
{"title":"Support effect in Ni-based catalysts for methane steam reforming: Role of MxOy-Al2O3 (M = Ni, Mg, Co) supports for enhanced catalyst stability","authors":"Yi Lin ,&nbsp;Zaixing Wang ,&nbsp;Lina Tang ,&nbsp;Shi Jiang ,&nbsp;Yu Guo ,&nbsp;Xiaoqin Liu","doi":"10.1016/j.fuproc.2025.108325","DOIUrl":"10.1016/j.fuproc.2025.108325","url":null,"abstract":"<div><div>Ni-based catalysts supported on composite metal oxides (NiO-Al<sub>2</sub>O<sub>3</sub>, MgO-Al<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>-Al<sub>2</sub>O<sub>3</sub>) were synthesized via coprecipitation followed by Ni impregnation to investigate the influence of support composition on catalyst stability in methane steam reforming. Accelerated deactivation protocols (methane decomposition, high-temperature sintering, hydrothermal oxidation) revealed hydrothermal oxidation as the primary cause of irreversible deactivation. The 10Ni/NiAl catalyst (10 wt% Ni/10 wt% NiO-Al<sub>2</sub>O<sub>3</sub>) showed remarkable regenerability after 923 K hydrothermal treatment, fully restoring its activity. This was attributed to coexisting reduced Ni species and readily reducible NiO, facilitating rapid reactivation. Other catalysts formed thermally stable NiAl<sub>2</sub>O<sub>4</sub>, leading to permanent deactivation. Methane cracking at 973 K had negligible effect, and 10Ni/NiAl catalyst exhibited the lowest carbon deposition (17.02 %). Under extreme hydrogen purged at 1223 K, only the 10Ni/CoAl catalyst exhibited a minor activity decline. The superior stability of 10Ni/NiAl was attributed to an in situ-formed NiAl composite metal oxides during 973 K calcination, which effectively anchored Ni particles, suppressed sintering, and prevented extensive oxidation.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108325"},"PeriodicalIF":7.7,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction characteristics of La/Co doped Mg-Fe-Al-O spinel oxygen carriers for chemical looping steam methane reforming La/Co掺杂Mg-Fe-Al-O尖晶石氧载体化学环蒸汽甲烷重整反应特性
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-09-05 DOI: 10.1016/j.fuproc.2025.108322
Shiyi Chen , Fangjun Wang , Jun Du , Shubo Chen , Wenguo Xiang
{"title":"Reaction characteristics of La/Co doped Mg-Fe-Al-O spinel oxygen carriers for chemical looping steam methane reforming","authors":"Shiyi Chen ,&nbsp;Fangjun Wang ,&nbsp;Jun Du ,&nbsp;Shubo Chen ,&nbsp;Wenguo Xiang","doi":"10.1016/j.fuproc.2025.108322","DOIUrl":"10.1016/j.fuproc.2025.108322","url":null,"abstract":"<div><div>Chemical looping steam methane reforming (CLSMR) is an efficient and promising method to co-produce syngas and hydrogen. In this work, the La/Co doped Mg-Fe-Al-O spinel was synthesized via co-precipitation method as oxygen carrier in CLSMR. The introduction of La ions enhances the dispersion of the iron oxide on the particle surface and retards the growth of the oxygen carrier grain size, and the incorporation Co ions creates oxygen vacancies, which facilitates the lattice oxygen migration. The results reveal the optimal ratios of La: Co is 5:5 in the doping. In the reduction, the La5Co5 sample generates the syngas with a H<sub>2</sub>/CO molar ratio of ∼2, a CH<sub>4</sub> conversion rate of 85.1 %, and a syngas yield of 3.75 mmol/g<sub>oc</sub>. In the oxidation, H<sub>2</sub> is produced with a yield of 1.25 mmol/g<sub>oc</sub> and a concentration &gt; 95 vol%. In SEM and XRD characterization analysis, the La5Co5 oxygen carrier after multiple reaction cycles exhibits minimal sintering, with stable phases and slight changes in grain size. The La<img>Co synergistic effect can also enhance the methane partial oxidation. The deep-reduced oxygen carrier owns sufficient oxygen vacancies as active sites for steam splitting to produce high concentration hydrogen.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108322"},"PeriodicalIF":7.7,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of the catalytic transformation for biomass derivatives into high-value fuels and chemicals over bimetallic Ni-Re catalysts 综述了双金属Ni-Re催化剂催化生物质衍生物转化为高价值燃料和化学品的研究进展
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-09-04 DOI: 10.1016/j.fuproc.2025.108326
Pratikkumar Lakhani, Atthapon Srifa
{"title":"A comprehensive review of the catalytic transformation for biomass derivatives into high-value fuels and chemicals over bimetallic Ni-Re catalysts","authors":"Pratikkumar Lakhani,&nbsp;Atthapon Srifa","doi":"10.1016/j.fuproc.2025.108326","DOIUrl":"10.1016/j.fuproc.2025.108326","url":null,"abstract":"<div><div>Ni-Re bimetallic catalysts provide an excellent synergy of hydrogenation activity from Ni and oxophilic acidity from ReO<sub>X</sub>, allowing for effective conversion of biomass-derived molecules into fuels and chemicals. This review highlights recent developments in Ni-Re catalyst synthesis, structure-performance relationships, and applications in key transformations such as furfural, 5-hydroxymethylfurfural, and levulinic acid upgrading, and hydrodeoxygenation of fatty acid esters. The discussion highlights bifunctional mechanisms, hydrogen spillover, and metal-support interactions in controlling selectivity. Catalyst deactivation challenges and regeneration strategies are also addressed. Finally, future research directions are suggested with emphasis on atomic-scale catalyst design, integration of green hydrogen, and industrial use in sustainable biorefineries.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108326"},"PeriodicalIF":7.7,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144988771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights into the influence mechanism of carbon structure in iron coke after gasification on its combustion behavior and kinetics: Experiments, ReaxFF MD, and DFT 气化后铁焦碳结构对其燃烧行为和动力学影响机理的分子研究:实验,ReaxFF MD,和DFT
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-09-03 DOI: 10.1016/j.fuproc.2025.108324
Jie Wang , Wei Wang , Xuheng Chen , Bowen Chen , Runsheng Xu
{"title":"Molecular insights into the influence mechanism of carbon structure in iron coke after gasification on its combustion behavior and kinetics: Experiments, ReaxFF MD, and DFT","authors":"Jie Wang ,&nbsp;Wei Wang ,&nbsp;Xuheng Chen ,&nbsp;Bowen Chen ,&nbsp;Runsheng Xu","doi":"10.1016/j.fuproc.2025.108324","DOIUrl":"10.1016/j.fuproc.2025.108324","url":null,"abstract":"<div><div>Iron coke has attracted attention as a low-carbon ironmaking fuel due to its high reactivity and efficient resource utilization. However, the structural characteristics of iron coke after gasification and their effect mechanisms affecting subsequent combustion remain unclear. This study investigated the effects of gasification on the carbon structure of iron coke using XRD and Raman spectroscopy, and revealed the influence mechanism of carbon structure on combustion behavior and kinetics through combined thermogravimetric analysis, ReaxFF MD, and DFT calculations. The results demonstrate that the gasification reaction catalyzed by iron/iron oxides induces more defects in the carbon structure of iron coke. The higher the gasification degree of iron coke, the greater its following combustion reactivity. Increasing the heating rate in the non-isothermal combustion process can markedly enhance the combustion performance of iron coke. ReaxFF MD simulations reveal that oxygen radicals preferentially attack and react with vacancy defects in the carbon structure, which is the primary reason for the increased reactivity of defective structures. Due to the curling effect between carbon layers, the activation energy during combustion initially increases and then decreases with rising carbon conversion. DFT calculations indicate that vacancy defects in the carbon structure play a critical role in enhancing combustion behavior. On one hand, the increased defects provide more active sites, reducing the adsorption energy for O<sub>2</sub> molecules. On the other hand, the synergistic effect of van der Waals interactions and chemical bonds in defective carbon structures effectively reduces activation energy for the combustion reaction.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108324"},"PeriodicalIF":7.7,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144931866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition 分层Mo/HTNU-9促进甲烷芳构化,减轻碳沉积
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-09-02 DOI: 10.1016/j.fuproc.2025.108323
Jing Hu, Xiaodong Chen, Chunxue Yang, Jingjing Tian, Xin Kang, Xiaohui Wang, Jinglin Liu
{"title":"Hierarchical Mo/HTNU-9 boosts methane aromatization with mitigated carbon deposition","authors":"Jing Hu,&nbsp;Xiaodong Chen,&nbsp;Chunxue Yang,&nbsp;Jingjing Tian,&nbsp;Xin Kang,&nbsp;Xiaohui Wang,&nbsp;Jinglin Liu","doi":"10.1016/j.fuproc.2025.108323","DOIUrl":"10.1016/j.fuproc.2025.108323","url":null,"abstract":"<div><div>Methane dehydroaromatization (MDA) offers a promising route for converting methane into aromatics, yet rapid catalyst deactivation via coking remains a critical barrier. This study addresses this challenge through TPAOH-assisted hierarchical pore engineering of HTNU-9 zeolite. Controlled desilication (0.25 mol/L TPAOH, 24 h) generates micro-mesoporous Mo/HTNU-9-24 while retaining microporous integrity, achieving a 22 % increase in methane conversion (14.7 % vs. 11.4 % for pristine Mo/HTNU-9) at 700 °C. The hierarchical architecture enhances mass transfer and Mo dispersion via synergistic effects. Silanol-rich mesopore surfaces and mild alkalinity stabilize Mo species, selective removal of strong acid sites coupled with spatial confinement of mesopores mitigate coke accumulation. The optimized catalyst exhibits prolonged stability due to restricted Mo agglomeration and efficient carbon precursor diffusion. These findings establish a dual strategy (pore topology control and acid site modulation) to synchronize active center dynamics and coke resistance, advancing the rational design of hierarchical zeolites for industrial MDA applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108323"},"PeriodicalIF":7.7,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent plant-wide decision-support framework for waste valorization: Optimizing hydrochar production and energy recovery 用于废物增值的智能全厂决策支持框架:优化碳氢化合物生产和能源回收
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-08-30 DOI: 10.1016/j.fuproc.2025.108320
Prathana Nimmanterdwong , Atthapon Srifa , Tawach Prechthai , Nattapong Tuntiwiwattanapun , Ratchanon Piemjaiswang , Bor-Yih Yu , Phuwadej Pornaroontham , Teerawat Sema , Benjapon Chalermsinsuwan , Pornpote Piumsomboon
{"title":"An intelligent plant-wide decision-support framework for waste valorization: Optimizing hydrochar production and energy recovery","authors":"Prathana Nimmanterdwong ,&nbsp;Atthapon Srifa ,&nbsp;Tawach Prechthai ,&nbsp;Nattapong Tuntiwiwattanapun ,&nbsp;Ratchanon Piemjaiswang ,&nbsp;Bor-Yih Yu ,&nbsp;Phuwadej Pornaroontham ,&nbsp;Teerawat Sema ,&nbsp;Benjapon Chalermsinsuwan ,&nbsp;Pornpote Piumsomboon","doi":"10.1016/j.fuproc.2025.108320","DOIUrl":"10.1016/j.fuproc.2025.108320","url":null,"abstract":"<div><div>This study presents an intelligent plant-wide decision-support framework, MIRA (Multi-objective Integrated Resource Allocation), which integrates deep learning and thermodynamic process modeling with particle swarm optimization (PSO) to optimize hydrochar production and energy recovery from diverse waste streams. Its hybrid architecture leverages artificial neural networks (ANNs), trained on experimental data but unable to enforce mass-energy conservation, coupling with thermodynamic simulation to ensure mass and energy conservation and thermodynamic consistency. The framework models two major waste valorization pathways: (1) direct combustion with energy recovery, as demonstrated by Thailand's Phuket waste-to-energy plant, and (2) hydrothermal carbonization (HTC) followed by electricity generation. MIRA simultaneously optimizes environmental and economic outcomes by adjusting HTC temperature and hydrochar routing fraction. Scenario-based optimization was applied to three representative feedstocks, organic household waste digestate (OHWD), municipal solid waste (MSW), and agricultural residue (AGR), under CO<sub>2</sub>-focused, revenue-focused, and balanced objectives. AGR demonstrated the highest responsiveness, achieving up to 3.14 MWh of electricity and $274.2 in revenue per ton of wet feed when prioritizing energy recovery. OHWD showed moderate potential, while MSW performance was limited by high ash and moisture. Overall, MIRA offers a scalable, accurate tool for waste-to-energy optimization, with future extensions to broader thermochemical and infrastructure systems.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108320"},"PeriodicalIF":7.7,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144917814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial electrosynthesis of CO₂ to multiple carbon products: Metabolic pathways, key factors, and sustainable prospects 微生物电合成CO 2到多种碳产物:代谢途径,关键因素和可持续发展前景
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-08-30 DOI: 10.1016/j.fuproc.2025.108321
Sifan Sun , Jun Dong , Weihong Zhang , Guohao Shao , Chenlu Li , Yan Li
{"title":"Microbial electrosynthesis of CO₂ to multiple carbon products: Metabolic pathways, key factors, and sustainable prospects","authors":"Sifan Sun ,&nbsp;Jun Dong ,&nbsp;Weihong Zhang ,&nbsp;Guohao Shao ,&nbsp;Chenlu Li ,&nbsp;Yan Li","doi":"10.1016/j.fuproc.2025.108321","DOIUrl":"10.1016/j.fuproc.2025.108321","url":null,"abstract":"<div><div>In recent years, CO₂ emission has been a global consensus that it is urgent to reduce CO₂ emissions and realize CO₂ resource utilization. However, current technologies for CO₂ reduction have the problems of high energy input, high operational costs, and a risk of secondary pollution. Microbial electrosynthesis (MES) combines the metabolic activities of microorganisms on electrodes with electrical energy to convert CO₂ into organics. Although MES has the advantages of mild reaction conditions, low operational cost, and potential for high-value-added products, it still confronts obstacles like low electron transfer efficiency, low conversion rate, improper reactor design and operation, etc. Therefore, this paper provided a comprehensive review of MES with CO<sub>2</sub> conversion, aiming to identify the determinants of the process and exploit its future research directions. There are three tasks in this review: Firstly, typical fatty acid and alcohol production (3.5 to 5700 mg L<sup>−1</sup> d<sup>−1</sup>) from MES and their metabolic pathways were introduced elaborately. Secondly, the determining factors of MES, such as reactor configuration, electrode material, cathodic potential (generally −0.8 to −1.2 V vs. Ag/AgCl), and coulombic efficiency (17.6 % to 113.6 %), were comprehensively discussed. Finally, challenges of microbial electrochemical reduction of CO₂ were discussed, and future research directions were proposed.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108321"},"PeriodicalIF":7.7,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144919808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFD-guided catalytic combustion optimization of CH4/H2/NH3 blends using staged Ni-based catalysts: Insights into NOx mitigation and efficiency enhancement 基于分级镍基催化剂的cfd引导下CH4/H2/NH3混合物的催化燃烧优化:对NOx减排和效率提高的见解
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-08-29 DOI: 10.1016/j.fuproc.2025.108315
Muhammad Mubashir , Dekui Shen , Muhammad Aurangzeb , Sheeraz Iqbal , Md Shafiullah , Aymen Flah , Habib Kraiem
{"title":"CFD-guided catalytic combustion optimization of CH4/H2/NH3 blends using staged Ni-based catalysts: Insights into NOx mitigation and efficiency enhancement","authors":"Muhammad Mubashir ,&nbsp;Dekui Shen ,&nbsp;Muhammad Aurangzeb ,&nbsp;Sheeraz Iqbal ,&nbsp;Md Shafiullah ,&nbsp;Aymen Flah ,&nbsp;Habib Kraiem","doi":"10.1016/j.fuproc.2025.108315","DOIUrl":"10.1016/j.fuproc.2025.108315","url":null,"abstract":"<div><div>The decarbonization of industrial combustion systems demands fuel strategies that reduce greenhouse gas emissions while maintaining high efficiency and operational stability. This study explores the catalytic combustion behavior of ternary CH<sub>4</sub>/H<sub>2</sub>/NH<sub>3</sub> fuel blends using high-fidelity Large Eddy Simulation (LES) integrated with a validated reduced chemical mechanism (51 species, 420 reactions). The focus is to overcome ammonia's inherent limitations: low reactivity, high ignition temperature (&gt; 650 °C), and elevated NO<sub>x</sub> formation, by leveraging catalytic surface interactions. A novel staged catalyst configuration based on Ni-Cu/Fe<sub>2</sub>O<sub>3</sub> is proposed, with upstream NH<sub>3</sub> decomposition and downstream NO<sub>x</sub> reduction zones. Parametric simulations reveal that a 30:30:40 volumetric fuel blend (CH<sub>4</sub>:H<sub>2</sub>:NH<sub>3</sub>) achieves optimal performance, yielding combustion efficiency above 97 %, NO<sub>x</sub> emissions below 30 ppm, and NH<sub>3</sub> slip under 15 ppm. Catalyst staging improves performance over uniform coating, reducing NO<sub>x</sub> by 79.3 % and NH<sub>3</sub> slip by 56.1 %. Stability maps indicate extended flame anchoring over a wide equivalence ratio range (0.65–1.1) and inlet velocities up to 25 m/s. A comprehensive reaction pathway analysis attributes 65 % of NO<sub>x</sub> to fuel NO, 25 % to thermal NO, and 10 % to prompt NO mechanisms. Catalytic activity proves most effective within the 550–650 K surface temperature window. The results highlight a scalable pathway for integrating catalytic combustion in low-carbon energy systems and establish a foundation for future experimental validation. This work offers practical insight for transitioning toward cleaner combustion technologies, particularly in ammonia-assisted hybrid fuels for advanced burners, reformers, and industrial heating applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108315"},"PeriodicalIF":7.7,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144911917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic conversion of eucalyptus pre-hydrolysis liquor-derived xylo-oligosaccharides to furfural using dual-acidic functionalized covalent organic frameworks 双酸功能化共价有机框架催化桉木预水解液衍生低聚木糖转化为糠醛
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-08-28 DOI: 10.1016/j.fuproc.2025.108317
Peng Gan, Kai Zhang, Jingli Yang, Baobin Wang, Guihua Yang, Chengcheng Qiao, Lei Zhang, Jiachuan Chen
{"title":"Catalytic conversion of eucalyptus pre-hydrolysis liquor-derived xylo-oligosaccharides to furfural using dual-acidic functionalized covalent organic frameworks","authors":"Peng Gan,&nbsp;Kai Zhang,&nbsp;Jingli Yang,&nbsp;Baobin Wang,&nbsp;Guihua Yang,&nbsp;Chengcheng Qiao,&nbsp;Lei Zhang,&nbsp;Jiachuan Chen","doi":"10.1016/j.fuproc.2025.108317","DOIUrl":"10.1016/j.fuproc.2025.108317","url":null,"abstract":"<div><div>The application of biorefinery technologies to convert xylo-oligosaccharide (XOS) from pulping process into biofuels or high-value chemicals holds significant potential for extending the value chain of the pulp and paper industry, while simultaneously promoting sustainability. In this study, a series of dual-acid functionalized covalent organic frameworks (COFs) were synthesized to catalyze the one-step liquid-phase conversion of XOS into furfural. The results indicated that TAPT-DHPA exhibited exceptional catalytic activity, achieving a furfural yield of 78.6 % at 180 °C for 3 h with 0.16 wt% catalyst. Furthermore, TAPT-DHPA demonstrated excellent stability, maintaining a furfural yield above 77 % after six reuse cycles. Bader charge analysis via VASP software revealed the presence of both Brønsted and Lewis acid active sites in TAPT-DHPA, arising from the ionization of hydrogen in phenolic hydroxyl groups and the strong electron-withdrawing nature of the triazine ring, respectively. These characteristics are key factors in TAPT-DHPA's superior catalytic performance. Density functional theory calculations confirmed that the most favorable pathway for furfural production involves a cyclic anhydride intermediate, with the rate-limiting step being the initial dehydration of D-xylose triggered by proton attack on the 2-OH group. The addition of TAPT-DHPA reduced the activation energy of this rate-limiting step by 54.43 %.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108317"},"PeriodicalIF":7.7,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144911916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the type of particle boards on the nitrogen fate during their pyrolysis and combustion 刨花板类型对其热解和燃烧过程中氮命运的影响
IF 7.7 2区 工程技术
Fuel Processing Technology Pub Date : 2025-08-28 DOI: 10.1016/j.fuproc.2025.108316
Thomas Bertus , Jérôme Lémonon , F. Javier Escudero Sanz , Sylvain Salvador
{"title":"Impact of the type of particle boards on the nitrogen fate during their pyrolysis and combustion","authors":"Thomas Bertus ,&nbsp;Jérôme Lémonon ,&nbsp;F. Javier Escudero Sanz ,&nbsp;Sylvain Salvador","doi":"10.1016/j.fuproc.2025.108316","DOIUrl":"10.1016/j.fuproc.2025.108316","url":null,"abstract":"<div><div>Particle boards, wastes made out of wood particles bonded with nitrogen-rich adhesives, produce high NOx emissions during combustion, requiring control in biomass grate furnaces. However, the diversity of particle board feedstocks has often been overlooked, and the specific effects of different types have not been studied, despite accounting for over 10 % of the total volume.</div><div>This work analyzes nitrogen behavior during combustion of standard, moisture-resistant, and fire-retardant particle boards. The combustion process was investigated as a whole, but also by proceeding separately to pyrolysis and char oxidation experiments. Thermogravimetric analysis and experiments conducted in a cross-fired fixed bed reactor were performed under both air and inert (N2) atmospheres. The nitrogen content in various combustion products (incondensable gases, condensates, and residual solids) was quantified to assess the impact of chemical treatments on nitrogen fate.</div><div>Results showed that standard and moisture-resistant particle boards showed comparable combustion behaviors. Notable differences emerged during the combustion of fire-retardant particle boards, likely due to the influence of fire-retardant agents. In these cases, a slower heating rate within the bed and reduced hydrogen cyanide (HCN) emissions were observed compared to the other two types. Across all experiments, most of the nitrogen released was found in condensates</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108316"},"PeriodicalIF":7.7,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144907505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信