Experimental and numerical investigation on effect of fluidization degree and temperature on bed agglomeration during bioslurry fast pyrolysis in a fluidized bed
Wenran Gao , Haoran Chen , Yi Liao , Yansheng Wu , Haonan Zhu , Hong Zhang , Jinping Weng , Xin Guo , Xun Hu , Xiongchao Lin , Karnowo , Shu Zhang
{"title":"Experimental and numerical investigation on effect of fluidization degree and temperature on bed agglomeration during bioslurry fast pyrolysis in a fluidized bed","authors":"Wenran Gao , Haoran Chen , Yi Liao , Yansheng Wu , Haonan Zhu , Hong Zhang , Jinping Weng , Xin Guo , Xun Hu , Xiongchao Lin , Karnowo , Shu Zhang","doi":"10.1016/j.fuproc.2025.108229","DOIUrl":null,"url":null,"abstract":"<div><div>Bioslurry utilized in fluidized beds may occur bed agglomeration, and understanding the formation of bed agglomeration is significant for bioslurry efficient utilization. This study investigated the effects of fluidization degree and temperature on bed agglomeration during fast pyrolysis of bioslurry by numerical simulation and experiments. The findings indicated when the flow rate of fluidizing gas increased from 1.0 to 3.0 L/min, the agglomeration yield rose from 31.16 % to 48.08 %. Combined with the numerical simulation, it was proved that 2.0 L/min was the optimum flow rate for effective fluidization. Below it, fluidization could not be achieved and some sand particles were not contact with fuel. Above it, local agglomerations were caused by excessive gas flow. Research on the correlation between bed agglomeration and tar/char revealed that bed agglomeration was primarily governed by fluidization efficiency, not by tar/coke. Furthermore, increasing pyrolysis temperature effectively reduced the agglomeration yield. As the temperature rose from 300 to 800 °C, the agglomeration yield decreased from 52.58 % to 9.84 %. However, when temperature > 600 °C, further increasing temperature had a limited effect on mitigating agglomeration. Additionally, there was a linear positive correlation between bed agglomeration due to tar/coke and tar/coke yield, with coke consistently playing a key role.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"273 ","pages":"Article 108229"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000530","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bioslurry utilized in fluidized beds may occur bed agglomeration, and understanding the formation of bed agglomeration is significant for bioslurry efficient utilization. This study investigated the effects of fluidization degree and temperature on bed agglomeration during fast pyrolysis of bioslurry by numerical simulation and experiments. The findings indicated when the flow rate of fluidizing gas increased from 1.0 to 3.0 L/min, the agglomeration yield rose from 31.16 % to 48.08 %. Combined with the numerical simulation, it was proved that 2.0 L/min was the optimum flow rate for effective fluidization. Below it, fluidization could not be achieved and some sand particles were not contact with fuel. Above it, local agglomerations were caused by excessive gas flow. Research on the correlation between bed agglomeration and tar/char revealed that bed agglomeration was primarily governed by fluidization efficiency, not by tar/coke. Furthermore, increasing pyrolysis temperature effectively reduced the agglomeration yield. As the temperature rose from 300 to 800 °C, the agglomeration yield decreased from 52.58 % to 9.84 %. However, when temperature > 600 °C, further increasing temperature had a limited effect on mitigating agglomeration. Additionally, there was a linear positive correlation between bed agglomeration due to tar/coke and tar/coke yield, with coke consistently playing a key role.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.