{"title":"High yield methane production from the hydrogenation of CO₂ using non-thermal plasma/catalysis","authors":"Maryam Khatibi, Paul T. Williams","doi":"10.1016/j.fuproc.2025.108228","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a dielectric barrier discharge (DBD) non-thermal plasma/catalytic reactor was used under a range of process conditions, designed to maximise the hydrogenation of CO₂ to methane. A Ni/Al₂O₃ catalyst was used in the plasma/catalysis reactor and the process parameters investigated were the effect of input plasma power, catalyst temperature, catalyst weight hourly space velocity (WHSV), and H₂/CO₂ ratio in relation to the methanation of CO₂. In addition, the effect of the catalyst active metal type (ruthenium, cobalt, and lanthanum) supported on Al₂O₃ under the optimum reaction conditions was investigated. The optimised system, using Ni/Al<sub>2</sub>O<sub>3</sub>, achieved a CO₂ conversion of 82.2 % with an energy efficiency of 22.5 g<sub>CO₂</sub>kWh<sup>−1</sup>, CH₄ selectivity of 90.2 % and energy efficiency of 7.4 g<sub>CH₄</sub>kWh<sup>−1</sup> at the plasma input power of 70 W, catalyst temperature of 280 °C, catalyst WHSV of 768 ml/g<sub>cat</sub>h, and H₂/CO₂ ratio of 4. The performance of the active catalyst metals in relation to CO₂ conversion to methane was Ru > Ni > Co > La.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"273 ","pages":"Article 108228"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000529","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a dielectric barrier discharge (DBD) non-thermal plasma/catalytic reactor was used under a range of process conditions, designed to maximise the hydrogenation of CO₂ to methane. A Ni/Al₂O₃ catalyst was used in the plasma/catalysis reactor and the process parameters investigated were the effect of input plasma power, catalyst temperature, catalyst weight hourly space velocity (WHSV), and H₂/CO₂ ratio in relation to the methanation of CO₂. In addition, the effect of the catalyst active metal type (ruthenium, cobalt, and lanthanum) supported on Al₂O₃ under the optimum reaction conditions was investigated. The optimised system, using Ni/Al2O3, achieved a CO₂ conversion of 82.2 % with an energy efficiency of 22.5 gCO₂kWh−1, CH₄ selectivity of 90.2 % and energy efficiency of 7.4 gCH₄kWh−1 at the plasma input power of 70 W, catalyst temperature of 280 °C, catalyst WHSV of 768 ml/gcath, and H₂/CO₂ ratio of 4. The performance of the active catalyst metals in relation to CO₂ conversion to methane was Ru > Ni > Co > La.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.