Fuel Processing Technology最新文献

筛选
英文 中文
Catalytic steam reforming of waste tire pyrolysis volatiles using a tire char catalyst for high yield hydrogen-rich syngas 使用轮胎炭催化剂对废轮胎热解挥发物进行催化蒸汽转化,以获得高产率的富氢合成气
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-11-04 DOI: 10.1016/j.fuproc.2024.108150
Yukun Li, Paul T. Williams
{"title":"Catalytic steam reforming of waste tire pyrolysis volatiles using a tire char catalyst for high yield hydrogen-rich syngas","authors":"Yukun Li,&nbsp;Paul T. Williams","doi":"10.1016/j.fuproc.2024.108150","DOIUrl":"10.1016/j.fuproc.2024.108150","url":null,"abstract":"<div><div>The production of hydrogen and syngas (H<sub>2</sub>/CO) from waste tires by pyrolysis catalytic steam reforming was investigated in a two-stage fixed bed reactor. In this study, tire char served as a sacrificial catalyst, facilitating the combination of catalytic steam reforming and char steam gasification reactions. The tire char acted as both a catalyst and a gasification reactant, enhancing the gas product yield. The process parameters investigated were, a reforming temperature range of 700–1000 °C, steam space velocity between 2 and 12 g h<sup>−1</sup> g<sup>−1</sup><sub>char</sub> and reaction times of 0.5–2 h. The influence of the parameters on the yield and composition of the product gases and the characteristics of the used catalyst were analyzed in detail. The results indicated that higher temperature and steam space velocity increased H<sub>2</sub> and CO yields in the presence of a tire char catalyst. Elemental analysis of the used tire char, surface morphology and pore structure provided insights into the extent of tire char consumption in the reaction. Prolonged reaction time allowed for more thorough reactions between the pyrolysis volatiles and tire char, promoting the production of H<sub>2</sub>. At a reaction time of 2 h, the H<sub>2</sub> yield reached 223 mmol g<sup>−1</sup>, representing 74 wt% of the maximum hydrogen yield.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108150"},"PeriodicalIF":7.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of press channel diameter-to-length ratio on the mechanical properties of biomass pellets during storage 压制槽长径比对生物质颗粒储存期间机械性能的影响
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-30 DOI: 10.1016/j.fuproc.2024.108149
Abdullah Sadeq, Swantje Pietsch-Braune, Stefan Heinrich
{"title":"Impact of press channel diameter-to-length ratio on the mechanical properties of biomass pellets during storage","authors":"Abdullah Sadeq,&nbsp;Swantje Pietsch-Braune,&nbsp;Stefan Heinrich","doi":"10.1016/j.fuproc.2024.108149","DOIUrl":"10.1016/j.fuproc.2024.108149","url":null,"abstract":"<div><div>This study investigates the effects of press channel length on the quality of wood pellets, focusing on key aspects such as density, radial porosity distribution, and mechanical stability, both at the time of delivery and during storage. Wood pellets were produced using press channels with diameter-to-length (D/L) ratios of 1:3, 1:4, and 1:5 to evaluate how variations in die geometry influence pellet quality. Micro-computed tomography (μCT) analysis indicates that the D/L ratio of the press channel significantly impacts the porosity within the pellets. Short press channels are associated with great variability in the radial porosity distribution of the wood pellets, while longer press channels lead to uniformly low porosity over the radius. Furthermore, pellets produced with longer press channels exhibit a smoother surface with fewer cracks and greater resistance to structural degradation under varying humidity conditions. Although high-density pellets show improved mechanical strength and recovery potential in humid environments, remaining damage in the form of cracks and alterations in radial porosity distribution lead to reduced strength compared to their initial state.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108149"},"PeriodicalIF":7.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing diesel production from waste plastics: A study on Pd/MCM-48 catalytic hydroprocessing 提高废塑料的柴油产量:Pd/MCM-48 催化加氢处理研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-19 DOI: 10.1016/j.fuproc.2024.108145
Abdul Khaliq , Krishna Kumar Yadav , Sultan Alshehery , Haifa A. Alqhtani , May Bin-Jumah , P.N. Poovizhi , Sumithra Viswanathan , P. Saravanan , R. Sankar , P. Santhana Krishnan , P. Tamizhdurai
{"title":"Enhancing diesel production from waste plastics: A study on Pd/MCM-48 catalytic hydroprocessing","authors":"Abdul Khaliq ,&nbsp;Krishna Kumar Yadav ,&nbsp;Sultan Alshehery ,&nbsp;Haifa A. Alqhtani ,&nbsp;May Bin-Jumah ,&nbsp;P.N. Poovizhi ,&nbsp;Sumithra Viswanathan ,&nbsp;P. Saravanan ,&nbsp;R. Sankar ,&nbsp;P. Santhana Krishnan ,&nbsp;P. Tamizhdurai","doi":"10.1016/j.fuproc.2024.108145","DOIUrl":"10.1016/j.fuproc.2024.108145","url":null,"abstract":"<div><div>In recent years, plastic has emerged as a widely used material, replacing traditional materials across various industries due to its versatility and convenience. However, this extensive adoption of plastic has resulted in significant environmental challenges, especially in managing mixed plastic waste. To address this, energy recovery technologies have been developed to offer alternative recycling methods for plastic waste. This study specifically focuses on producing hydroprocessed plastic pyrolysis oil from mixed waste plastic to create environmentally compliant fuel. The scrutiny compares the resultant fuel with diesel using hydroprocessing techniques and catalytic pyrolysis. Physicochemical characterization and GC–MS analysis compare the properties and compositions of MPPO, HPO, and diesel fuel. The waste polymers, which included HDPE, PP, and LDPE, were hydroprocessed and pyrolysed using platinum sulphate on zirconia oxide supports to produce a diesel equivalent. The alkane content of the blended fuel that was produced was 95 % that of diesel. The n-alkane levels in the carbon number ranges C11–C15 and C16–C20 were, respectively, 25 % and 10 % lower than diesel. But as one might expect from mixing heavy fuel oil, there were substantially more n-alkanes with carbon numbers of C21–C25. The combined fuel contained 10 % fewer isoalkanes than diesel. Ships can be powered by low-carbon fuel that was created by combining hydroprocessed fuel with commercial heavy fuel oil. Since the alternative fuel will emit considerably fewer emissions, the maritime industry can choose to replace it in order to help fulfil.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108145"},"PeriodicalIF":7.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of fuel and lubricant oil on particulate emissions in direct injection spark ignition engines: A comparative study of methane and hydrogen 燃料和润滑油对直接喷射火花点火发动机微粒排放的影响:甲烷和氢气的比较研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-17 DOI: 10.1016/j.fuproc.2024.108144
Barbara Apicella , Francesco Catapano , Silvana Di Iorio , Agnese Magno , Carmela Russo , Paolo Sementa , Antonio Tregrossi , Bianca Maria Vaglieco
{"title":"Impact of fuel and lubricant oil on particulate emissions in direct injection spark ignition engines: A comparative study of methane and hydrogen","authors":"Barbara Apicella ,&nbsp;Francesco Catapano ,&nbsp;Silvana Di Iorio ,&nbsp;Agnese Magno ,&nbsp;Carmela Russo ,&nbsp;Paolo Sementa ,&nbsp;Antonio Tregrossi ,&nbsp;Bianca Maria Vaglieco","doi":"10.1016/j.fuproc.2024.108144","DOIUrl":"10.1016/j.fuproc.2024.108144","url":null,"abstract":"<div><div>Internal combustion engines play a critical role in the global transportation system and the use of alternative fuels, such as methane and hydrogen, offers a promising way for ensuring their sustainability in the future. The best way to exploit the gaseous fuels properties is through the direct injection that allows to enhance the efficiency and to prevent backfire issues. On the other hand, this injection strategy causes a high interaction of the lubricant oil in the combustion process and hence high level of particle emissions despite the low/zero carbon content in the fuels. An experimental study was conducted on a spark-ignition engine powered by directly injected methane. This study involved both physical and chemical characterization of emissions, with the aim of providing an in-depth analysis of the hazardous pollutants emitted. Additionally, it sought to identify their origins, whether from the fuel or lubricating oil. Experimental results show that a higher concentration of particles is produced at higher engine speed. In this condition, which has a more significant environmental impact, a comparison between methane and hydrogen-fueled engine operating under similar conditions was performed, revealing that hydrogen engine produces more particles with a smaller size.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108144"},"PeriodicalIF":7.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competitive effects of compounding aromatic hydrogen storage carriers in low-pressure hydrogenation reactions 低压氢化反应中复合芳香族储氢载体的竞争效应
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-15 DOI: 10.1016/j.fuproc.2024.108143
Xiaopeng Mei , Zixuan Ma , Yingjie Yang , Xiaofeng Gao , Hantao Gong , Ziyu Song , Siyu Yao
{"title":"Competitive effects of compounding aromatic hydrogen storage carriers in low-pressure hydrogenation reactions","authors":"Xiaopeng Mei ,&nbsp;Zixuan Ma ,&nbsp;Yingjie Yang ,&nbsp;Xiaofeng Gao ,&nbsp;Hantao Gong ,&nbsp;Ziyu Song ,&nbsp;Siyu Yao","doi":"10.1016/j.fuproc.2024.108143","DOIUrl":"10.1016/j.fuproc.2024.108143","url":null,"abstract":"<div><div>The reaction activity of various liquid organic hydrogen carriers (LOHCs) over 5 wt% Rh/C (BET surface area 933.5 g/cm<sup>3</sup>, pore size 4.6 nm, metal dispersion 10.5 %) and 5 wt% Ru/C (BET surface area 888.4 g/cm<sup>3</sup>, pore size 6.1 nm, metal dispersion 8.9 %) catalysts is evaluated. The results show that monocyclic aromatic hydrocarbons have the highest reactivity, followed by monocyclic aromatic rings, while polycyclic and fused cyclic aromatic hydrocarbons have relatively low activity. It is also found that mixing different LOHCs leads to a competitive effect, resulting in lower reactivities for all LOHCs. As the degree of LOHC hydrogenation increases, the adsorption of multi-step hydrogenation intermediates becomes more difficult, resulting in lower yields of fully hydrogenated products. It is important to understand the behavior of LOHCs in hydrogenation reactions and to optimize the performance of LOHCs compound systems.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108143"},"PeriodicalIF":7.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimization of structural parameters of SCR system under Eley-Rideal reaction mechanism based on machine learning coupled with response surface methodology 基于机器学习和响应面方法的 Eley-Rideal 反应机理下 SCR 系统结构参数的多目标优化
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-14 DOI: 10.1016/j.fuproc.2024.108141
Zhiqing Zhang , Weihuang Zhong , Mingzhang Pan , Zibin Yin , Kai Lu
{"title":"Multi-objective optimization of structural parameters of SCR system under Eley-Rideal reaction mechanism based on machine learning coupled with response surface methodology","authors":"Zhiqing Zhang ,&nbsp;Weihuang Zhong ,&nbsp;Mingzhang Pan ,&nbsp;Zibin Yin ,&nbsp;Kai Lu","doi":"10.1016/j.fuproc.2024.108141","DOIUrl":"10.1016/j.fuproc.2024.108141","url":null,"abstract":"<div><div>Selective catalytic reduction (SCR) is an important method to control nitrogen oxides (NO<sub>x</sub>) emissions from diesel engines. Excellent SCR structural parameters are the key to effectively reduce NO<sub>x</sub> and back pressure. The dynamic reaction processes of NO<sub>x</sub> standard reaction, fast reaction and NO<sub>2</sub>-SCR reaction are deeply explored by establishing the Eley-Rideal model. The results show that the wall thickness and washcoat thickness of the SCR are the main determinants of the catalyst performance, while the CPSI has a great influence on the pressure drop. In addition, regression prediction analysis of experimental data by random forest (RF), particle swarm optimized backpropagation artificial neural network (PSOBP-ANN) and response surface methodology (RSM) was performed to explore the coupling relation functions of structural parameters, and optimal test results were solved and verified. The denitrification efficiency of the structure-optimized SCR system increased by 22 % and the pressure drop decreased by 23 %.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108141"},"PeriodicalIF":7.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating isomers distribution of n-dodecane hydroisomerization by mordenite-ZSM-22 composite zeolite 利用莫来石-ZSM-22 复合沸石调节正十二烷加氢异构化的异构体分布
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-10 DOI: 10.1016/j.fuproc.2024.108140
Jiangnan Xiang, Wei Zhang, Yuting Wang, Haiying Lu, Yan Wang, Weijiong Dai, Binbin Fan, Jiajun Zheng, Jinghong Ma, Ruifeng Li
{"title":"Modulating isomers distribution of n-dodecane hydroisomerization by mordenite-ZSM-22 composite zeolite","authors":"Jiangnan Xiang,&nbsp;Wei Zhang,&nbsp;Yuting Wang,&nbsp;Haiying Lu,&nbsp;Yan Wang,&nbsp;Weijiong Dai,&nbsp;Binbin Fan,&nbsp;Jiajun Zheng,&nbsp;Jinghong Ma,&nbsp;Ruifeng Li","doi":"10.1016/j.fuproc.2024.108140","DOIUrl":"10.1016/j.fuproc.2024.108140","url":null,"abstract":"<div><div>Mordenite-ZSM-22 composite zeolite is prepared by the physical mixing. The structure, pore properties, acid properties and diffusion properties of samples are characterized by the means of XRD, N<sub>2</sub> physical adsorption-desorption, SEM, TEM, NH<sub>3</sub>-TPD, Py-IR, and ZLC. The pore properties and acid properties of mordenite-ZSM-22 composite zeolite can be efficiently modulated by changing mass ratio of mordenite and ZSM-22. In <em>n</em>-C<sub>12</sub> hydroisomerization reaction, Pt/HMZ-<em>x</em> displays great capacity in modulate <em>n</em>-dodecane isomers distribution (mono-branched <em>i</em>-C<sub>12</sub>, multi-branched <em>i</em>-C<sub>12</sub>, terminal branched <em>i</em>-C<sub>12</sub> and central branched <em>i</em>-C<sub>12</sub>), these results are ascribed to that these composite zeolite catalysts combined the topology structure advantage of mordenite and ZSM-22. When reaction temperature is 280 °C, the ratio of mono-branched <em>i</em>-C<sub>12</sub> selectivity to multi-branched <em>i</em>-C<sub>12</sub> selectivity (S<sub>MB</sub>/S<sub>MTB</sub>) of Pt/HZSM-22, Pt/HMZ-1, Pt/HMZ-3, Pt/HMZ-5 and Pt/HMOR were 37.64, 15.04, 5.48, 5.20 and 1.47, respectively. The ZLC diffusion experiment results indicate that low isomer selectivity of Pt/HMOR is due to its poor diffusivity. On the contrary, Pt/HZSM-22 favors the diffusion of reactants and has better catalytic performance.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108140"},"PeriodicalIF":7.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on ignition characteristics of an integrated inclined combustor 综合倾斜燃烧器点火特性的实验研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-09 DOI: 10.1016/j.fuproc.2024.108142
Ge Wang , Xu Yang , Wei Li , Yi Gao , Yunpeng Liu , Yingwen Yan
{"title":"Experimental study on ignition characteristics of an integrated inclined combustor","authors":"Ge Wang ,&nbsp;Xu Yang ,&nbsp;Wei Li ,&nbsp;Yi Gao ,&nbsp;Yunpeng Liu ,&nbsp;Yingwen Yan","doi":"10.1016/j.fuproc.2024.108142","DOIUrl":"10.1016/j.fuproc.2024.108142","url":null,"abstract":"<div><div>To obtain the ignition performance of an integrated inclined combustor, we perform an experimental study on the ignition performance of an inclined combustor under various ignition positions, inlet flow rates, and fuel air ratios (<em>FARs</em>). The experimental results reveal the following. 1) During ignition at I1, the inclined combustor presents the best ignition performance. 2) The forward propagation process of flame along the swirler's inclined direction easily realizes flame propagation, whereas the backward flame propagation process in the swirler's inclined direction is difficult to achieve; forward and backward flame propagations exhibit evident differences. 3) The diffusion propagation of swirl flames at the ignition head is the main means swirl flames are generated at the nonignition head. 4) During the ignition process, the combustion intensity increases with the increase in <em>FAR</em> and decreases with the increase in inlet flow rate. 5) The successful ignition time decreases with the increase in inlet flow rate and <em>FAR</em>.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108142"},"PeriodicalIF":7.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation 生物质的太阳热能转换:太阳能聚光器/反应器的原理、已报告的研究和大规模实施的前景
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-10-01 DOI: 10.1016/j.fuproc.2024.108139
Yassir Makkawi, Mihad Ibrahim, Nihal Yasir, Omar Moussa
{"title":"Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation","authors":"Yassir Makkawi,&nbsp;Mihad Ibrahim,&nbsp;Nihal Yasir,&nbsp;Omar Moussa","doi":"10.1016/j.fuproc.2024.108139","DOIUrl":"10.1016/j.fuproc.2024.108139","url":null,"abstract":"<div><div>Solar-thermal biomass conversion using both direct and indirect concentrated solar thermal energy is an emerging approach that combines two renewable energy sources to enhance energy efficiency and enable sustainable processing. This review paper provides a comprehensive examination of various types of solar concentrators and reactors, showcasing the diversity of available technologies and their roles in enhancing conversion efficiency. The paper focuses on the reported studies on biomass solar-thermal conversion through gasification and pyrolysis processes, critically discussing the integrated process operating conditions and the quality of the products (biofuels). These analyses affirm the technical viability, emphasizing the relatively low energy investment required for pyrolysis compared to the total energy output from biomass feedstock. This points to the substantial promise of solar thermal biomass conversion as a sustainable and efficient renewable energy solution. The conclusion highlights the importance of ongoing research, technological advancements, and policy support to fully realize the potential of solar-thermal conversion of biomass.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108139"},"PeriodicalIF":7.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pilot-scale study of methane-assisted catalytic bitumen partial upgrading 甲烷辅助催化沥青部分提质试验研究
IF 7.2 2区 工程技术
Fuel Processing Technology Pub Date : 2024-09-27 DOI: 10.1016/j.fuproc.2024.108138
Zhaofei Li, Ali Omidkar, Hua Song
{"title":"Pilot-scale study of methane-assisted catalytic bitumen partial upgrading","authors":"Zhaofei Li,&nbsp;Ali Omidkar,&nbsp;Hua Song","doi":"10.1016/j.fuproc.2024.108138","DOIUrl":"10.1016/j.fuproc.2024.108138","url":null,"abstract":"<div><div>The direct utilization of heavy and extra-heavy crude oils presents a formidable challenge due to their inherent physical and chemical properties such as high C/H ratio, extremely high viscosity and density, low API<sup>o</sup>, super low mobility, high asphaltene and impurity (Fe, Ni, Co, S, N, etc.) contents. To tackle these problems cost-effectively, we have proposed and established a novel technique, distinct from conventional hydrotreating, for catalytic partial upgrading of extra heavy crudes with co-fed methane and a multi-functional catalyst. This technique has been further optimized using lab-scale batch reactors (100 mL, 300 mL), bench-scale and pilot-scale fixed bed reactors with their processing capacity of 250 mL/day and 20 L/day, respectively. The feasibility, stability, and profitability of this technique have been successfully verified using all these facilities and a wide variety of feedstock. Yet, further scale-up is necessary to advance this technique towards commercialization in industry. In this study, a pilot-scale prototype unit (processing capacity of 1 barrel/day) was designed and manufactured based upon the previous achievements, and a bitumen sample recovered from the Steam Assisted Gravity Drainage (SAGD) process was chosen as a typical extra heavy crude for the upgrading. A 30-day upgrading has been conducted smoothly without clogging and a liquid yield of 96.7 % was observed with remarkable enhancements in product quality. The notable decreases in density, viscosity, TAN, asphaltene content, and sulfur content were confirmed and consistent with previous results. A low olefin content implies excellent stability and compatibility of the liquid product. Additionally, a preliminary TEA (Techno-Economic Assessment) and LCA (Life-Cycle Analysis) have been conducted and the beneficial features of this novel technique have been confirmed with higher profitability, lower cost, and lower carbon footprint. This study further consolidates the advantages of this promising technique as a cost-effective and environmentally friendly alternative to hydrotreating for processing extra heavy crudes.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108138"},"PeriodicalIF":7.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信