{"title":"An explainable MHSA enabled deep architecture with dual-scale convolutions for methane source classification using remote sensing","authors":"Kamakhya Bansal, Ashish Kumar Tripathi","doi":"10.1016/j.envsoft.2024.106178","DOIUrl":"10.1016/j.envsoft.2024.106178","url":null,"abstract":"<div><p>Methane is the second most abundant greenhouse gas after carbon dioxide. Anthropogenic sources are the dominant emitters of methane. The poor spatial resolution of satellite imagery, high interclass similarity, the multi-scalar nature of features, and the dominance of background limit the performance of the previous approaches. Further, the reliance on high-resolution imagery limits the cost-effective global application of the works introduced in the literature. To resolve this, the present work proposes a novel method for methane source classification based on open-source multi-spectral satellite imagery of Sentinel-1 and 2. The work utilizes deep dual-scale convolutions with scaled dot product self-attention calculated across the 15 composite bands of Sentinel-1 and 2 data. The incorporation of non-RGB bands along with the RGB bands further enables the model to learn the spectral differences essential for the classification. The experimental results witness the superior performance of the developed method against other considered state-of-the-art methods.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106178"},"PeriodicalIF":4.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernesto Sanz , Jorge Trincado , Jorge Martínez , Jorge Payno , Omer Morante , Andrés F. Almeida-Ñaulay , Antonio Berlanga , José M. Molina , Sergio Zubelzu , Miguel A. Patricio
{"title":"Cloud-based system for monitoring event-based hydrological processes based on dense sensor network and NB-IoT connectivity","authors":"Ernesto Sanz , Jorge Trincado , Jorge Martínez , Jorge Payno , Omer Morante , Andrés F. Almeida-Ñaulay , Antonio Berlanga , José M. Molina , Sergio Zubelzu , Miguel A. Patricio","doi":"10.1016/j.envsoft.2024.106186","DOIUrl":"10.1016/j.envsoft.2024.106186","url":null,"abstract":"<div><p>Hydrologists claim high-quality experimental data are required to improve the understanding of hydrological processes. Though accurate devices for measuring hydrological processes are available, the on-site deployment and operation of effective monitoring networks face many relevant issues caused by the peculiar characteristics of hydrological systems. In this manuscript, we present a self-developed system for monitoring events-based hydrological processes comprising a dense network with both soil moisture and water level gauges connected by NB-IoT technology integrated into a cloud system for near real-time gathering of information. We designed, built and calibrated the sensors and integrated them into a cloud system. We deployed them in two monitoring networks and gathered the data from several experimental runs (battery lifecycles). Results showed the suitability of the sensors and the network to properly monitor the processes solving the initial relevant issues mainly derived from connectivity issues and battery duration.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"182 ","pages":"Article 106186"},"PeriodicalIF":4.8,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002470/pdfft?md5=13f29f5b5e5bc51e3c80cb4402b5983a&pid=1-s2.0-S1364815224002470-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew L. Hamilton , Trevor J. Amestoy, Patrick M. Reed
{"title":"Pywr-DRB: An open-source Python model for water availability and drought risk assessment in the Delaware River Basin","authors":"Andrew L. Hamilton , Trevor J. Amestoy, Patrick M. Reed","doi":"10.1016/j.envsoft.2024.106185","DOIUrl":"10.1016/j.envsoft.2024.106185","url":null,"abstract":"<div><p>The Delaware River Basin (DRB) in the Mid-Atlantic region of the United States is an institutionally complex water resources system that provides drinking water for 13.5 million people, plus water for energy, industry, recreation, and ecosystems. This paper introduces Pywr-DRB, an open-source Python model exploring the impacts of reservoir operations, transbasin diversions, and minimum flow targets on water availability and drought risk in the DRB. Pywr-DRB draws on streamflow estimates from emerging data resources, bridging advances in large-scale hydrologic modeling with an improved representation of the basin's evolving water infrastructure and management institutions. Our detailed model diagnostic assessment demonstrates that Pywr-DRB provides substantial improvements over sole use of hydrologic models in capturing the DRB's dynamics. We also explore how water management alters model-derived risk estimates for low flows and water demand shortfalls. Our approach to diagnostic benchmarking and water systems modeling is broadly applicable to other major basins.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106185"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002469/pdfft?md5=91c5b1e93b9f2f09503b058effe2fca6&pid=1-s2.0-S1364815224002469-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elise Jonsson , Andrijana Todorović , Malgorzata Blicharska , Andreina Francisco , Thomas Grabs , Janez Sušnik , Claudia Teutschbein
{"title":"An introduction to data-driven modelling of the water-energy-food-ecosystem nexus","authors":"Elise Jonsson , Andrijana Todorović , Malgorzata Blicharska , Andreina Francisco , Thomas Grabs , Janez Sušnik , Claudia Teutschbein","doi":"10.1016/j.envsoft.2024.106182","DOIUrl":"10.1016/j.envsoft.2024.106182","url":null,"abstract":"<div><p>Attaining resource security in the <strong>w</strong>ater, <strong>e</strong>nergy, <strong>f</strong>ood, and <strong>e</strong>cosystem (WEFE) sectors, the WEFE nexus, is paramount. This necessitates the use of quantitative modelling, which presents many challenges, as this is a complex system acting at the intersection of the physical- and social sciences. However, as WEFE data is becoming more widely available, data-driven methods of modelling this system are becoming increasingly viable. Here, we discuss two main problems in WEFE nexus modelling: system identification and control. System identification uses Machine Learning algorithms to obtain dynamical models from data and have shown promise in many disciplines with similar characteristics as the nexus. Meanwhile, control algorithms manipulate a system to achieve objectives and are becoming instrumental in shaping nexus policy. Despite the promise of these algorithms, data-driven modelling is a vast and daunting field, and so here we provide an introductory overview of this field, with emphasis on nexus applications.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106182"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002433/pdfft?md5=5cfc6d90e65be6d19815e087d8b6f5c8&pid=1-s2.0-S1364815224002433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extending our understanding on the retrievals of surface energy fluxes and surface soil moisture from the “triangle” technique","authors":"George P. Petropoulos","doi":"10.1016/j.envsoft.2024.106180","DOIUrl":"10.1016/j.envsoft.2024.106180","url":null,"abstract":"<div><p>The present study demonstrates the capability of an inversion modelling scheme so-called the “triangle” to retrieve spatiotemporal estimates of surface energy fluxes and soil surface moisture (SSM) at high resolution using ASTER satellite imagery synergistically with SimSphere land biosphere model. In addition, as a further objective of this study is to examine the use of the technique for retrieving the Evaporative (EF) and the Non-Evaporative (NEF) Fractions as representations of the daytime average fluxes. The applicability of the investigated technique, is demonstrated for sixteen calendar days of year 2011 using in-situ data acquired from nine CarboEurope sites representing a variety of climatic, topographic and environmental conditions. Results indicated a close agreement between all the inverted parameters and the corresponding in-situ data. SSM predicted maps showed a small bias of 0.08 vol vol<sup>−1</sup>, a scatter of 0.18 vol vol<sup>−1</sup> and a RMSD of 0.19 vol vol<sup>−1</sup>. The predicted LE fluxes showed a relatively low overall agreement (RMSD = 65.10 Wm<sup>-2</sup>), whereas for H flux reported RMSD was 85.02 Wm<sup>-2</sup>. The results also confirmed the ability of the investigated technique to provide meaningful estimates of the NEF and EF. All in all, the present study findings were at least comparable, or of higher accuracy, to those reported in other similar verification studies of the “triangle” using both high resolution (airborne) and low resolution (satellite) data. To our knowledge, this study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting combining the SimSphere SVAT model and ASTER EO datasets.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106180"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and evaluation of a general approach for predicting pathogen decay in surface waters using hierarchical Bayesian modeling","authors":"Kara Dean, Jade Mitchell","doi":"10.1016/j.envsoft.2024.106183","DOIUrl":"10.1016/j.envsoft.2024.106183","url":null,"abstract":"<div><p>A general approach for predicting indicator and pathogen decay in surface waters was developed using Bayesian hierarchical modeling, a persistence database, and a two-parameter model form. The resulting hierarchical regression describes general persistence behaviors with target-level intercepts and population-level coefficients. Uncertainty factors calculated with the approach suggest fecal indicator bacteria (FIB) and pathogenic bacteria persist similarly in surface waters, but median virus and protozoa persistence metrics may be 2–3 times greater than FIB in similar conditions. The two-parameter model underpinning the approach was used to identify drivers of these differences. Virus decay rates were shown to taper off more quickly than FIB, whereas protozoa were associated with longer initial periods of minimal decay. Despite the low accuracy of the hierarchical model compared to models fit to individual datasets, this approach addresses a critical gap for water management decision-making as site-specific and pathogen-specific persistence data are uncommon in water monitoring practices.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106183"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dashe Li , Yufang Yang , Siwei Zhao , Jinqiang Ding
{"title":"Segmentation of underwater fish in complex aquaculture environments using enhanced Soft Attention Mechanism","authors":"Dashe Li , Yufang Yang , Siwei Zhao , Jinqiang Ding","doi":"10.1016/j.envsoft.2024.106170","DOIUrl":"10.1016/j.envsoft.2024.106170","url":null,"abstract":"<div><p>Underwater fish segmentation technology serves as a crucial foundation for extracting aquatic biological information. However, due to intricate and fluctuating underwater environments, existing segmentation models fail to precisely focus on key image regions. Based on this, the paper developed an underwater fish segmentation model, Receptive Field Expansion Model(RFEM), by enhancing soft attention performance (More attention is directed to fish regions when processing fish pixels). This paper tests ten different attention mechanisms and selects the attention mechanism with better performance indicators to improve it and form an RFEM model. This paper uses two underwater fish data sets to verify the proposed model. The experimental results show the segmentation mean intersection-over-union ratio (MIoU) of RFEM based on dilation convolution reached 88.37%, and the mCPA reached 93.83%, Accuracy reached 96.08%, and F1-score reached 93.74%. It can provide solid technical support for intelligent monitoring such as body length measurement, weight estimation of underwater fish.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106170"},"PeriodicalIF":4.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A modeller’s fingerprint on hydrodynamic decision support modelling","authors":"J.O.E. Remmers, A.J. Teuling, L.A. Melsen","doi":"10.1016/j.envsoft.2024.106167","DOIUrl":"10.1016/j.envsoft.2024.106167","url":null,"abstract":"<div><p>Model results can have far-reaching societal implications, requiring fit-for-purpose models. However, model output is resulting from a particular path chosen with each modelling decision. We interviewed fourteen modellers in the Dutch water management sector in order to study how decision support hydrodynamic modellers make modelling decisions. An inductive-content analysis was performed. We identified eight motivation-categories. Individual and team considerations mostly motivate modelling decisions. We identified patterns between the motivation-categories and their occurrence across modelling steps. Modelling decisions during model implementation were found to be more in the modeller’s direct sphere of influence, while decisions concerning model structure and data selection more outside of it. So, even though modellers can leave their fingerprint, their sphere of influence and thus their fingerprint’s clarity is bound by institutionalised predefined decisions. Thus, models and their results are shaped within a broader sphere than the modeller’s alone, requiring a broader consideration of organisations and standards.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106167"},"PeriodicalIF":4.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002287/pdfft?md5=9cc47355d92f9065a0c6258ab5f3e963&pid=1-s2.0-S1364815224002287-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwanghee Han , Seokhyeon Kim , Rajeshwar Mehrotra , Ashish Sharma
{"title":"Enhanced water level monitoring for small and complex inland water bodies using multi-satellite remote sensing","authors":"Kwanghee Han , Seokhyeon Kim , Rajeshwar Mehrotra , Ashish Sharma","doi":"10.1016/j.envsoft.2024.106169","DOIUrl":"10.1016/j.envsoft.2024.106169","url":null,"abstract":"<div><p>Water level monitoring in lakes and reservoirs is essential for effective water resource management, especially in remote areas where traditional ground sensors are costly and difficult to maintain. Remote sensing offers an alternative, but improving the quality, resolution, and accuracy of satellite data remains crucial. This paper introduces MoRLa (Measurement of Reservoir Level from Altimetry), a data filtering procedure designed to enhance satellite altimetry retrievals. MoRLa increases the acceptance of satellite observations and improves the quality of water level estimates by using physical characteristics of water bodies to exclude non-conforming measurements. Unlike previous studies with static masks, MoRLa employs a dynamic filter adaptable to actual water levels at specific times. Tested on reservoirs in the Korean Peninsula, including the Hwang-Gang dam, MoRLa shows significant improvements in water level measurements using Cryosat-2, ICESat-2, and Sentinel-3A and B satellites.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106169"},"PeriodicalIF":4.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalyanmoy Deb , A. Pouyan Nejadhashemi , Gregorio Toscano , Hoda Razavi , Lewis Linker
{"title":"Leveraging innovization and transfer learning to optimize best management practices in large-scale watershed management","authors":"Kalyanmoy Deb , A. Pouyan Nejadhashemi , Gregorio Toscano , Hoda Razavi , Lewis Linker","doi":"10.1016/j.envsoft.2024.106161","DOIUrl":"10.1016/j.envsoft.2024.106161","url":null,"abstract":"<div><p>Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106161"},"PeriodicalIF":4.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}