Unveiling uncertainties in soil organic carbon modeling: the critical role of climate response functions

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Huiwen Li , Yue Cao , Jingfeng Xiao , Wenxin Zhang , Yiping Wu , Arshad Ali , Zuoqiang Yuan
{"title":"Unveiling uncertainties in soil organic carbon modeling: the critical role of climate response functions","authors":"Huiwen Li ,&nbsp;Yue Cao ,&nbsp;Jingfeng Xiao ,&nbsp;Wenxin Zhang ,&nbsp;Yiping Wu ,&nbsp;Arshad Ali ,&nbsp;Zuoqiang Yuan","doi":"10.1016/j.envsoft.2025.106537","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately simulating soil organic carbon (SOC) dynamics is essential for carbon-related assessments. Process-oriented SOC models employ temperature (<em>f</em>(T)) and soil moisture (<em>f</em>(W)) response functions derived from specific conditions to simulate SOC responses to climate change, yet are widely applied in regional and global-scale studies. How these functions affect regional SOC simulations remains unclear. We evaluated the impacts of ten <em>f</em>(T) and nine <em>f</em>(W) functions using the Double Layer Carbon Model (DLCM) in the Qinling Mountains from 1982 to 2018. After calibration by Particle Swarm Optimization, DLCM estimated initial SOC with high spatial consistency (<em>R</em><sup>2</sup> &gt; 0.9) and less than 1 % bias against machine learning based baseline maps over 85 % of the area. Different functions led to large SOC variations (up to 37 % in topsoil and 30 % in subsoil). Their combined impacts vary significantly under climate fluctuations, highlighting the need for accurate functions to improve SOC prediction in a changing climate.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106537"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522500221X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately simulating soil organic carbon (SOC) dynamics is essential for carbon-related assessments. Process-oriented SOC models employ temperature (f(T)) and soil moisture (f(W)) response functions derived from specific conditions to simulate SOC responses to climate change, yet are widely applied in regional and global-scale studies. How these functions affect regional SOC simulations remains unclear. We evaluated the impacts of ten f(T) and nine f(W) functions using the Double Layer Carbon Model (DLCM) in the Qinling Mountains from 1982 to 2018. After calibration by Particle Swarm Optimization, DLCM estimated initial SOC with high spatial consistency (R2 > 0.9) and less than 1 % bias against machine learning based baseline maps over 85 % of the area. Different functions led to large SOC variations (up to 37 % in topsoil and 30 % in subsoil). Their combined impacts vary significantly under climate fluctuations, highlighting the need for accurate functions to improve SOC prediction in a changing climate.
揭示土壤有机碳模型中的不确定性:气候响应函数的关键作用
准确模拟土壤有机碳动态是碳相关评价的基础。面向过程的有机碳模型利用特定条件下的温度(f(T))和土壤湿度(f(W))响应函数来模拟有机碳对气候变化的响应,目前已广泛应用于区域和全球尺度的研究。这些功能如何影响区域SOC模拟尚不清楚。利用双层碳模型(DLCM)评价了1982 - 2018年秦岭地区10个f(T)和9个f(W)函数的影响。经粒子群算法校正后,DLCM估计的初始SOC具有较高的空间一致性(R2 >;0.9),对85%以上区域的基于机器学习的基线地图的偏差小于1%。不同功能导致土壤有机碳含量的变化较大(表层土壤最高可达37%,底土最高可达30%)。它们的综合影响在气候波动下变化显著,因此需要精确的功能来改善气候变化下的有机碳预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信