如何将通用人工智能用于特定任务应用:用河流摄像机监测水位趋势的案例研究

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ze Wang , Heng Lyu , Yanqing Guo , Shun'an Zhou , Chi Zhang
{"title":"如何将通用人工智能用于特定任务应用:用河流摄像机监测水位趋势的案例研究","authors":"Ze Wang ,&nbsp;Heng Lyu ,&nbsp;Yanqing Guo ,&nbsp;Shun'an Zhou ,&nbsp;Chi Zhang","doi":"10.1016/j.envsoft.2025.106550","DOIUrl":null,"url":null,"abstract":"<div><div>Water level variations influence geochemical and hydrological processes within river networks. Water segmentation from river camera images using deep learning supports water level trend monitoring, but domain-specific model accuracies are constrained by limited annotated data. To improve accuracy, this study proposes a framework combining domain-specific models with General AI. The framework uses the Segment Anything Model (SAM) as backbone, with a pre-trained ResUnet model identifying highest-probability water pixels as a prompt to SAM, without any requirement for human intervention or local annotation. Applied to river camera images from Tewkesbury, UK, the framework increased the Intersection over Union (<em>IoU</em>) by over 15 % compared to the single ResUnet. <em>Point prompt</em> was identified as the optimal mode for feeding water-related prior knowledge to SAM. The static observer flooding index derived from segmented masks showed a strong correlation (0.90) with real water level, surpassing the ResUnet's 0.54. Our framework allows for the supplementation of river monitoring networks with camera gauges, providing robust water level trend observations.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106550"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to use general AI for task-specific applications: A case study of monitoring water level trends with river cameras\",\"authors\":\"Ze Wang ,&nbsp;Heng Lyu ,&nbsp;Yanqing Guo ,&nbsp;Shun'an Zhou ,&nbsp;Chi Zhang\",\"doi\":\"10.1016/j.envsoft.2025.106550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water level variations influence geochemical and hydrological processes within river networks. Water segmentation from river camera images using deep learning supports water level trend monitoring, but domain-specific model accuracies are constrained by limited annotated data. To improve accuracy, this study proposes a framework combining domain-specific models with General AI. The framework uses the Segment Anything Model (SAM) as backbone, with a pre-trained ResUnet model identifying highest-probability water pixels as a prompt to SAM, without any requirement for human intervention or local annotation. Applied to river camera images from Tewkesbury, UK, the framework increased the Intersection over Union (<em>IoU</em>) by over 15 % compared to the single ResUnet. <em>Point prompt</em> was identified as the optimal mode for feeding water-related prior knowledge to SAM. The static observer flooding index derived from segmented masks showed a strong correlation (0.90) with real water level, surpassing the ResUnet's 0.54. Our framework allows for the supplementation of river monitoring networks with camera gauges, providing robust water level trend observations.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"192 \",\"pages\":\"Article 106550\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225002348\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002348","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

水位变化影响河网内的地球化学和水文过程。使用深度学习从河流相机图像中分割水支持水位趋势监测,但特定领域的模型精度受到有限的注释数据的限制。为了提高准确性,本研究提出了一个将特定领域模型与通用人工智能相结合的框架。该框架使用分段任意模型(SAM)作为主干,使用预训练的ResUnet模型识别概率最高的水像素作为SAM的提示,不需要任何人为干预或局部注释。将该框架应用于英国图克斯伯里的河流摄像机图像,与单一的ResUnet相比,该框架将Union (IoU)交叉口增加了15%以上。点提示是向SAM输入水相关先验知识的最优模式。由分段掩膜导出的静态观测者洪水指数与实际水位的相关性(0.90)较强,超过了ResUnet的0.54。我们的框架允许用相机测量仪补充河流监测网络,提供可靠的水位趋势观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to use general AI for task-specific applications: A case study of monitoring water level trends with river cameras
Water level variations influence geochemical and hydrological processes within river networks. Water segmentation from river camera images using deep learning supports water level trend monitoring, but domain-specific model accuracies are constrained by limited annotated data. To improve accuracy, this study proposes a framework combining domain-specific models with General AI. The framework uses the Segment Anything Model (SAM) as backbone, with a pre-trained ResUnet model identifying highest-probability water pixels as a prompt to SAM, without any requirement for human intervention or local annotation. Applied to river camera images from Tewkesbury, UK, the framework increased the Intersection over Union (IoU) by over 15 % compared to the single ResUnet. Point prompt was identified as the optimal mode for feeding water-related prior knowledge to SAM. The static observer flooding index derived from segmented masks showed a strong correlation (0.90) with real water level, surpassing the ResUnet's 0.54. Our framework allows for the supplementation of river monitoring networks with camera gauges, providing robust water level trend observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信