利用Twitter (X)与人工智能增强的自然语言处理进行灾害管理:来自加州野火的见解

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammadsepehr Karimiziarani, Ehsan Foroumandi, Hamid Moradkhani
{"title":"利用Twitter (X)与人工智能增强的自然语言处理进行灾害管理:来自加州野火的见解","authors":"Mohammadsepehr Karimiziarani,&nbsp;Ehsan Foroumandi,&nbsp;Hamid Moradkhani","doi":"10.1016/j.envsoft.2025.106545","DOIUrl":null,"url":null,"abstract":"<div><div>Social media usage surges during natural disasters, offering critical insights into public sentiment and needs. This study leverages artificial intelligence (AI) and advanced natural language processing (NLP) techniques to analyze Twitter (X) data from the 2018 California Camp Fire. By combining sentiment analysis, emotion classification, and humanitarian topic classification, we provide a nuanced understanding of social responses. Tweets were categorized into six humanitarian topics and twelve emotion classes, revealing significant regional and temporal variations. Our findings show shifts from immediate safety concerns to recovery and support as the disaster progressed. Results highlight key differences in emotional responses between California and other U.S. states, emphasizing the role of proximity in shaping social media discourse. These AI-driven insights can inform disaster management strategies by optimizing communication, resource allocation, and real-time decision-making. This research underscores the value of AI-powered social media analysis in enhancing disaster preparedness, response, and recovery efforts.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"192 ","pages":"Article 106545"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Twitter (X) with AI-enhanced natural language processing for disaster management: Insights from California wildfire\",\"authors\":\"Mohammadsepehr Karimiziarani,&nbsp;Ehsan Foroumandi,&nbsp;Hamid Moradkhani\",\"doi\":\"10.1016/j.envsoft.2025.106545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Social media usage surges during natural disasters, offering critical insights into public sentiment and needs. This study leverages artificial intelligence (AI) and advanced natural language processing (NLP) techniques to analyze Twitter (X) data from the 2018 California Camp Fire. By combining sentiment analysis, emotion classification, and humanitarian topic classification, we provide a nuanced understanding of social responses. Tweets were categorized into six humanitarian topics and twelve emotion classes, revealing significant regional and temporal variations. Our findings show shifts from immediate safety concerns to recovery and support as the disaster progressed. Results highlight key differences in emotional responses between California and other U.S. states, emphasizing the role of proximity in shaping social media discourse. These AI-driven insights can inform disaster management strategies by optimizing communication, resource allocation, and real-time decision-making. This research underscores the value of AI-powered social media analysis in enhancing disaster preparedness, response, and recovery efforts.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"192 \",\"pages\":\"Article 106545\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225002294\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225002294","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在自然灾害期间,社交媒体的使用激增,提供了对公众情绪和需求的关键洞察。本研究利用人工智能(AI)和先进的自然语言处理(NLP)技术来分析2018年加州营火的Twitter (X)数据。通过结合情感分析、情感分类和人道主义主题分类,我们提供了对社会反应的细致理解。推文被分为6个人道主义主题和12个情感类别,揭示了显著的地区和时间差异。我们的研究结果显示,随着灾难的发展,人们从对安全的直接关注转向了对恢复和支持的关注。研究结果突出了加州和美国其他州在情绪反应上的关键差异,强调了亲近度在塑造社交媒体话语中的作用。这些人工智能驱动的见解可以通过优化通信、资源分配和实时决策,为灾害管理策略提供信息。这项研究强调了人工智能驱动的社交媒体分析在加强备灾、救灾和恢复工作方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Twitter (X) with AI-enhanced natural language processing for disaster management: Insights from California wildfire
Social media usage surges during natural disasters, offering critical insights into public sentiment and needs. This study leverages artificial intelligence (AI) and advanced natural language processing (NLP) techniques to analyze Twitter (X) data from the 2018 California Camp Fire. By combining sentiment analysis, emotion classification, and humanitarian topic classification, we provide a nuanced understanding of social responses. Tweets were categorized into six humanitarian topics and twelve emotion classes, revealing significant regional and temporal variations. Our findings show shifts from immediate safety concerns to recovery and support as the disaster progressed. Results highlight key differences in emotional responses between California and other U.S. states, emphasizing the role of proximity in shaping social media discourse. These AI-driven insights can inform disaster management strategies by optimizing communication, resource allocation, and real-time decision-making. This research underscores the value of AI-powered social media analysis in enhancing disaster preparedness, response, and recovery efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信