ACS Nanoscience Au最新文献

筛选
英文 中文
On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots 利用纳米机器人对纳米塑料的捕获和清除进行实时监测
ACS Nanoscience Au Pub Date : 2024-04-09 DOI: 10.1021/acsnanoscienceau.4c00002
Dean I. Velikov, Anna Jancik-Prochazkova, Martin Pumera
{"title":"On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots","authors":"Dean I. Velikov, Anna Jancik-Prochazkova, Martin Pumera","doi":"10.1021/acsnanoscienceau.4c00002","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00002","url":null,"abstract":"Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots 利用纳米机器人对纳米塑料的捕获和清除进行实时监测
IF 4.8
ACS Nanoscience Au Pub Date : 2024-04-09 DOI: 10.1021/acsnanoscienceau.4c0000210.1021/acsnanoscienceau.4c00002
Dean I. Velikov, Anna Jancik-Prochazkova and Martin Pumera*, 
{"title":"On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots","authors":"Dean I. Velikov,&nbsp;Anna Jancik-Prochazkova and Martin Pumera*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0000210.1021/acsnanoscienceau.4c00002","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00002https://doi.org/10.1021/acsnanoscienceau.4c00002","url":null,"abstract":"<p >Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 4","pages":"243–249 243–249"},"PeriodicalIF":4.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Huge Role of Tiny Impurities in Nanoscale Synthesis 微小杂质在纳米级合成中的巨大作用
ACS Nanoscience Au Pub Date : 2024-04-08 DOI: 10.1021/acsnanoscienceau.3c00056
Angira Roy, Ciaran P. Healey, Nathaniel E. Larm, Piyuni Ishtaweera, Maryuri Roca* and Gary A. Baker*, 
{"title":"The Huge Role of Tiny Impurities in Nanoscale Synthesis","authors":"Angira Roy,&nbsp;Ciaran P. Healey,&nbsp;Nathaniel E. Larm,&nbsp;Piyuni Ishtaweera,&nbsp;Maryuri Roca* and Gary A. Baker*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00056","DOIUrl":"10.1021/acsnanoscienceau.3c00056","url":null,"abstract":"<p >Nanotechnology is vital to many current industries, including electronics, energy, textiles, agriculture, and theranostics. Understanding the chemical mechanisms of nanomaterial synthesis has contributed to the tunability of their unique properties, although studies frequently overlook the potential impact of impurities. Impurities can show adverse effects, clouding the interpretation of results or limiting the practical utility of the nanomaterial. On the other hand, as successful doping has demonstrated, the intentional introduction of impurities can be a powerful tool for enhancing the properties of a nanomaterial. This Review examines the complex role of impurities, unintentionally or intentionally added, during nanoscale synthesis and their effects on the performance and usefulness of the most common classes of nanomaterials: nanocarbons, noble metal and metal oxide nanoparticles, semiconductor quantum dots, thermoelectrics, and perovskites.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 3","pages":"176–193"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Therapeutic Efficacy of GLP-1 for Hyperglycemia Treatment: Overcoming Barriers of Oral Gene Therapy with Taurocholic Acid-Conjugated Protamine Sulfate and Calcium Phosphate 增强 GLP-1 治疗高血糖的疗效:用牛胆酸-硫酸原胺和磷酸钙克服口服基因疗法的障碍
ACS Nanoscience Au Pub Date : 2024-04-05 DOI: 10.1021/acsnanoscienceau.3c00035
S. M. Shatil Shahriar, Jeong Man An, Sachin S. Surwase, Dong Yun Lee and Yong-kyu Lee*, 
{"title":"Enhancing the Therapeutic Efficacy of GLP-1 for Hyperglycemia Treatment: Overcoming Barriers of Oral Gene Therapy with Taurocholic Acid-Conjugated Protamine Sulfate and Calcium Phosphate","authors":"S. M. Shatil Shahriar,&nbsp;Jeong Man An,&nbsp;Sachin S. Surwase,&nbsp;Dong Yun Lee and Yong-kyu Lee*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00035","DOIUrl":"10.1021/acsnanoscienceau.3c00035","url":null,"abstract":"<p >Activating the glucagon-like peptide-1 (GLP-1) receptor by oral nucleic acid delivery would be a promising treatment strategy against hyperglycemia due to its various therapeutic actions. However, GLP-1 receptor agonists are effective only in subcutaneous injections because they face multiple barriers due to harsh gastrointestinal tract (GIT) conditions before reaching the site of action. The apical sodium bile acid transporter (ASBT) pathway at the intestinal site could be an attractive target to overcome the problem. Herein, we used our previously established multimodal carrier system utilizing bile salt, protamine sulfate, and calcium phosphate as excipients (PTCA) and the GLP-1 gene as an active ingredient (GENE) to test the effects of different formulation doses against diabetes and obesity. The carrier system demonstrated the ability to protect the GLP-1 model gene encoded within the plasmid at the GIT and transport it <i>via</i> ASBT at the target site. A single oral dose, regardless of quantity, showed the generation of GLP-1 and insulin from the body and maintained the normoglycemic condition by improving insulin sensitivity and blood sugar tolerance for a prolonged period. This oral gene therapy approach shows significantly higher therapeutic efficacy in preclinical studies than currently available US Food and Drug Administration-approved GLP-1 receptor agonists such as semaglutide and liraglutide. Also, a single oral dose of GENE/PTCA is more effective than 20 insulin injections. Our study suggests that oral GENE/PTCA formulation could be a promising alternative to injection-based therapeutics for diabetics, which is effective in long-term treatment and has been found to be highly safe in all aspects of toxicology.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 3","pages":"194–204"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Molecule Investigation of the Binding Interface Stability of SARS-CoV-2 Variants with ACE2 SARS-CoV-2 变体与 ACE2 结合界面稳定性的单分子研究
ACS Nanoscience Au Pub Date : 2024-03-08 DOI: 10.1021/acsnanoscienceau.3c00060
Ankita Ray, Thu Thi Minh Tran, Rita dos Santos Natividade, Rodrigo A. Moreira, Joshua D. Simpson, Danahe Mohammed, Melanie Koehler, Simon J. L Petitjean, Qingrong Zhang, Fabrice Bureau, Laurent Gillet, Adolfo B. Poma* and David Alsteens*, 
{"title":"Single-Molecule Investigation of the Binding Interface Stability of SARS-CoV-2 Variants with ACE2","authors":"Ankita Ray,&nbsp;Thu Thi Minh Tran,&nbsp;Rita dos Santos Natividade,&nbsp;Rodrigo A. Moreira,&nbsp;Joshua D. Simpson,&nbsp;Danahe Mohammed,&nbsp;Melanie Koehler,&nbsp;Simon J. L Petitjean,&nbsp;Qingrong Zhang,&nbsp;Fabrice Bureau,&nbsp;Laurent Gillet,&nbsp;Adolfo B. Poma* and David Alsteens*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00060","DOIUrl":"10.1021/acsnanoscienceau.3c00060","url":null,"abstract":"<p >The SARS-CoV-2 pandemic spurred numerous research endeavors to comprehend the virus and mitigate its global severity. Understanding the binding interface between the virus and human receptors is pivotal to these efforts and paramount to curbing infection and transmission. Here we employ atomic force microscopy and steered molecular dynamics simulation to explore SARS-CoV-2 receptor binding domain (RBD) variants and angiotensin-converting enzyme 2 (ACE2), examining the impact of mutations at key residues upon binding affinity. Our results show that the Omicron and Delta variants possess strengthened binding affinity in comparison to the Mu variant. Further, using sera from individuals either vaccinated or with acquired immunity following Delta strain infection, we assess the impact of immunity upon variant RBD/ACE2 complex formation. Single-molecule force spectroscopy analysis suggests that vaccination before infection may provide stronger protection across variants. These results underscore the need to monitor antigenic changes in order to continue developing innovative and effective SARS-CoV-2 abrogation strategies.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 2","pages":"136–145"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Phase in Colloidal Synthesis 胶体合成中的相位控制
ACS Nanoscience Au Pub Date : 2024-02-29 DOI: 10.1021/acsnanoscienceau.3c00057
Emma J. Endres, Jeremy R. Bairan Espano, Alexandra Koziel, Antony R. Peng, Andrey A. Shults and Janet E. Macdonald*, 
{"title":"Controlling Phase in Colloidal Synthesis","authors":"Emma J. Endres,&nbsp;Jeremy R. Bairan Espano,&nbsp;Alexandra Koziel,&nbsp;Antony R. Peng,&nbsp;Andrey A. Shults and Janet E. Macdonald*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00057","DOIUrl":"10.1021/acsnanoscienceau.3c00057","url":null,"abstract":"<p >A fundamental precept of chemistry is that properties are manifestations of the elements present and their arrangement in space. Controlling the arrangement of atoms in nanocrystals is not well understood in nanocrystal synthesis, especially in the transition metal chalcogenides and pnictides, which have rich phase spaces. This Perspective will cover some of the recent advances and current challenges. The perspective includes introductions to challenges particular to chalcogenide and pnictide chemistry, the often-convoluted roles of bond dissociation energies and mechanisms by which precursors break down, using very organized methods to map the synthetic phase space, a discussion of polytype control, and challenges in characterization, especially for solving novel structures on the nanoscale and time-resolved studies.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 3","pages":"158–175"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACS Nanoscience Au in 2024: Looking Back and Gazing Forward 2024 年的 ACS Au 纳米科学展:回顾过去,展望未来
ACS Nanoscience Au Pub Date : 2024-02-21 DOI: 10.1021/acsnanoscienceau.4c00004
Raymond E. Schaak*, 
{"title":"ACS Nanoscience Au in 2024: Looking Back and Gazing Forward","authors":"Raymond E. Schaak*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c00004","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00004","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 1","pages":"1–2"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139914433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Tunable Nanoparticle Surface Functionalization to Alter Cellular Migration 利用可调纳米粒子表面功能化改变细胞迁移
ACS Nanoscience Au Pub Date : 2024-02-14 DOI: 10.1021/acsnanoscienceau.3c00055
Maxwell G. Tetrick,  and , Catherine J. Murphy*, 
{"title":"Leveraging Tunable Nanoparticle Surface Functionalization to Alter Cellular Migration","authors":"Maxwell G. Tetrick,&nbsp; and ,&nbsp;Catherine J. Murphy*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00055","DOIUrl":"10.1021/acsnanoscienceau.3c00055","url":null,"abstract":"<p >Gold nanoparticles (AuNPs) are a promising platform for biomedical applications including therapeutics, imaging, and drug delivery. While much of the literature surrounding the introduction of AuNPs into cellular systems focuses on uptake and cytotoxicity, less is understood about how AuNPs can indirectly affect cells via interactions with the extracellular environment. Previous work has shown that the monocytic cell line THP-1’s ability to undergo chemotaxis in response to a gradient of monocyte chemoattractant protein 1 (MCP-1) was compromised by extracellular polysulfonated AuNPs, presumably by binding to MCP-1 with some preference over other proteins in the media. The hypothesis to be explored in this work is that the degree of sulfonation of the surface would therefore be correlated with the ability of AuNPs to interrupt chemotaxis. Highly sulfonated poly(styrenesulfonate)-coated AuNPs caused strong inhibition of THP-1 chemotaxis; by reducing the degree of sulfonation on the AuNP surface with copolymers [poly(styrenesulfonate-<i>co</i>-maleate) of different compositions], it was found that medium and low sulfonation levels caused weak to no inhibition, respectively. Small, rigid molecular sulfonate surfaces were relatively ineffective at chemotaxis inhibition. Unusually, free poly(styrenesulfonate) caused a dose-dependent reversal of THP-1 cell migration: at low concentrations, free poly(styrenesulfonate) significantly inhibited MCP-1-induced chemotaxis. However, at high concentrations, free poly(styrenesulfonate) acted as a chemorepellent, causing a reversal in the cell migration direction.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 3","pages":"205–215"},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge Transport and Ion Kinetics in 1D TiS2 Structures are Dependent on the Introduction of Selenium Extrinsic Atoms 一维 TiS2 结构中的电荷传输和离子动力学取决于硒外原子的引入
ACS Nanoscience Au Pub Date : 2024-02-13 DOI: 10.1021/acsnanoscienceau.3c00059
Edwin J. Miller, Kameron R. Hansen and Luisa Whittaker-Brooks*, 
{"title":"Charge Transport and Ion Kinetics in 1D TiS2 Structures are Dependent on the Introduction of Selenium Extrinsic Atoms","authors":"Edwin J. Miller,&nbsp;Kameron R. Hansen and Luisa Whittaker-Brooks*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00059","DOIUrl":"10.1021/acsnanoscienceau.3c00059","url":null,"abstract":"<p >Improving charge insertion into intercalation hosts is essential for crucial energy and memory technologies. The layered material TiS<sub>2</sub> provides a promising template for study, but further development of this compound demands improvement to its ion kinetics. Here, we report the incorporation of Se atoms into TiS<sub>2</sub> nanobelts to address barriers related to sluggish ion motion in the material. TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts are synthesized through a solid-state method, and structural and electrochemical characterizations reveal that solid solutions based on TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts display increased interlayer spacing and electrical conductivity compared to pure TiS<sub>2</sub> nanobelts. Cyclic voltammetry and electrochemical impedance spectroscopy indicate that the capacitive behavior of the TiS<sub>2</sub> electrode is improved upon Se incorporation, particularly at low depths of discharge in the materials. The presence of Se in the structure can be directly related to an increased pseudocapacitive contribution to electrode behavior at a low Li<sup>+</sup> content in the material and thus to improved ion kinetics in the TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 2","pages":"146–157"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Air-Stable, Large-Area 2D Metals and Semiconductors 空气稳定的大面积二维金属和半导体
ACS Nanoscience Au Pub Date : 2024-01-30 DOI: 10.1021/acsnanoscienceau.3c00047
Chengye Dong, Li-Syuan Lu, Yu-Chuan Lin* and Joshua A. Robinson*, 
{"title":"Air-Stable, Large-Area 2D Metals and Semiconductors","authors":"Chengye Dong,&nbsp;Li-Syuan Lu,&nbsp;Yu-Chuan Lin* and Joshua A. Robinson*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00047","DOIUrl":"10.1021/acsnanoscienceau.3c00047","url":null,"abstract":"<p >Two-dimensional (2D) materials are popular for fundamental physics study and technological applications in next-generation electronics, spintronics, and optoelectronic devices due to a wide range of intriguing physical and chemical properties. Recently, the family of 2D metals and 2D semiconductors has been expanding rapidly because they offer properties once unknown to us. One of the challenges to fully access their properties is poor stability in ambient conditions. In the first half of this Review, we briefly summarize common methods of preparing 2D metals and highlight some recent approaches for making air-stable 2D metals. Additionally, we introduce the physicochemical properties of some air-stable 2D metals recently explored. The second half discusses the air stability and oxidation mechanisms of 2D transition metal dichalcogenides and some elemental 2D semiconductors. Their air stability can be enhanced by optimizing growth temperature, substrates, and precursors during 2D material growth to improve material quality, which will be discussed. Other methods, including doping, postgrowth annealing, and encapsulation of insulators that can suppress defects and isolate the encapsulated samples from the ambient environment, will be reviewed.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 2","pages":"115–127"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信