ACS Nanoscience AuPub Date : 2025-04-16DOI: 10.1021/acsnanoscienceau.5c0002510.1021/acsnanoscienceau.5c00025
Kwabena Bediako, Raffaella Buonsanti, Raymond E. Schaak and Nanfeng Zheng,
{"title":"The Role of Nanoscience in Energy Research","authors":"Kwabena Bediako, Raffaella Buonsanti, Raymond E. Schaak and Nanfeng Zheng, ","doi":"10.1021/acsnanoscienceau.5c0002510.1021/acsnanoscienceau.5c00025","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.5c00025https://doi.org/10.1021/acsnanoscienceau.5c00025","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"60–61 60–61"},"PeriodicalIF":4.8,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143833017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-03-27DOI: 10.1021/acsnanoscienceau.5c0002110.1021/acsnanoscienceau.5c00021
Hannah R. Lacey, Kevin D. Dobson and Emil A. Hernández-Pagán*,
{"title":"Correction to “Flexible Cation Exchange Environment via Ligand-Free Metal Chalcogenide Thin Films”","authors":"Hannah R. Lacey, Kevin D. Dobson and Emil A. Hernández-Pagán*, ","doi":"10.1021/acsnanoscienceau.5c0002110.1021/acsnanoscienceau.5c00021","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.5c00021https://doi.org/10.1021/acsnanoscienceau.5c00021","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"111 111"},"PeriodicalIF":4.8,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143833000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-03-19DOI: 10.1021/acsnanoscienceau.4c0008010.1021/acsnanoscienceau.4c00080
Amis Sharma, Chun-Chia Chen, Jordan McCourt, Mingi Kim, Kenji Watanabe, Takashi Taniguchi, Leonid Rokhinson, Gleb Finkelstein and Ivan Borzenets*,
{"title":"Fermi Velocity Dependent Critical Current in Ballistic Bilayer Graphene Josephson Junctions","authors":"Amis Sharma, Chun-Chia Chen, Jordan McCourt, Mingi Kim, Kenji Watanabe, Takashi Taniguchi, Leonid Rokhinson, Gleb Finkelstein and Ivan Borzenets*, ","doi":"10.1021/acsnanoscienceau.4c0008010.1021/acsnanoscienceau.4c00080","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00080https://doi.org/10.1021/acsnanoscienceau.4c00080","url":null,"abstract":"<p >We perform transport measurements on proximitized, ballistic, bilayer graphene Josephson junctions (BGJJs) in the intermediate-to-long junction regime (<i>L</i> > ξ). We measure the device’s differential resistance as a function of bias current and gate voltage for a range of different temperatures. The extracted critical current <i>I</i><sub>C</sub> follows an exponential trend with temperature: exp(−<i>k</i><sub>B</sub><i>T</i>/<i>δE</i>). Here <i>δE</i> = ℏν<sub><i>F</i></sub>/2<i>πL</i>: an expected trend for intermediate-to-long junctions. From <i>δE</i>, we determine the Fermi velocity of the bilayer graphene, which is found to increase with gate voltage. Simultaneously, we show the carrier density dependence of <i>δE</i>, which is attributed to the quadratic dispersion of bilayer graphene. This is in contrast to single layer graphene Josephson junctions, where <i>δE</i> and the Fermi velocity are independent of the carrier density. The carrier density dependence in BGJJs allows for additional tuning parameters in graphene-based Josephson junction devices.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"65–69 65–69"},"PeriodicalIF":4.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-03-12DOI: 10.1021/acsnanoscienceau.5c0000710.1021/acsnanoscienceau.5c00007
Samira Munkaila, Kevin J. Torres, Jennifer Wang and Marcus Weck*,
{"title":"Dielectrophoretic Assembly of Customized Colloidal Trimers","authors":"Samira Munkaila, Kevin J. Torres, Jennifer Wang and Marcus Weck*, ","doi":"10.1021/acsnanoscienceau.5c0000710.1021/acsnanoscienceau.5c00007","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.5c00007https://doi.org/10.1021/acsnanoscienceau.5c00007","url":null,"abstract":"<p >The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"100–110 100–110"},"PeriodicalIF":4.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-02-25DOI: 10.1021/acsnanoscienceau.5c0001410.1021/acsnanoscienceau.5c00014
Paul D. Goring, Amelia Newman, Christopher W. Jones* and Shelley D. Minteer*,
{"title":"Celebrating 5 Years of the ACS Au Journal Family","authors":"Paul D. Goring, Amelia Newman, Christopher W. Jones* and Shelley D. Minteer*, ","doi":"10.1021/acsnanoscienceau.5c0001410.1021/acsnanoscienceau.5c00014","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.5c00014https://doi.org/10.1021/acsnanoscienceau.5c00014","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"62–64 62–64"},"PeriodicalIF":4.8,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-02-13DOI: 10.1021/acsnanoscienceau.4c0007210.1021/acsnanoscienceau.4c00072
Josselyn Mata Calidonio, Arianna I. Maddox, Dhruvi S. Patel, Jonathan B. Dain, Melba Torres Sosa, Nichola J. Hill* and Kimberly Hamad-Schifferli*,
{"title":"Development of an Immunoassay for Highly Pathogenic Avian Influenza (H5N1) across Diverse Sample Matrices","authors":"Josselyn Mata Calidonio, Arianna I. Maddox, Dhruvi S. Patel, Jonathan B. Dain, Melba Torres Sosa, Nichola J. Hill* and Kimberly Hamad-Schifferli*, ","doi":"10.1021/acsnanoscienceau.4c0007210.1021/acsnanoscienceau.4c00072","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00072https://doi.org/10.1021/acsnanoscienceau.4c00072","url":null,"abstract":"<p >Avian influenza of the highly pathogenic subtype H5N1 has emerged as a global health concern, becoming endemic in wild birds and increasingly transmitting to poultry, livestock, and humans. This study aimed to develop a robust immunoassay for the rapid detection of the H5N1 highly pathogenic avian influenza virus across various sample matrices, including sera, milk, eggs, and bird samples. The assay targets the hemagglutinin (HA) protein, chosen for its abundance and accessibility on the virus surface. Utilizing gold nanospheres conjugated with α-HA IgG antibodies, the assay generated distinct colorimetric signals for both negative and positive samples. The test initially demonstrated an effective colorimetric response with a limit of detection (LOD) of 0.16 nM in human serum and was further optimized for running in whole milk, exhibiting an LOD of 1.72 nM. The assay exhibited versatility across different serum types and dairy products, although high-viscosity samples like heavy cream presented challenges. Furthermore, the immunoassay successfully detected HA of H5N1 in complex sample matrices such as oral, cloacal, and fecal samples from birds. This rapid and sensitive immunoassay represents a significant advance in HPAI surveillance tools, improving prospects for real-time detection to control outbreaks.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"93–99 93–99"},"PeriodicalIF":4.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-02-07DOI: 10.1021/acsnanoscienceau.4c0007010.1021/acsnanoscienceau.4c00070
Nicolas Gaudy, Mathieu Salanne* and Céline Merlet*,
{"title":"Effect of Gold Substrate on the Interface between Graphene Monolayer and an Ionic Liquid","authors":"Nicolas Gaudy, Mathieu Salanne* and Céline Merlet*, ","doi":"10.1021/acsnanoscienceau.4c0007010.1021/acsnanoscienceau.4c00070","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00070https://doi.org/10.1021/acsnanoscienceau.4c00070","url":null,"abstract":"<p >The unique properties of graphene make it an ideal material for electrochemical studies, particularly of the electrochemical double-layer. However, experimental studies generally require depositing graphene on substrates like gold, that may affect the electronic structure of the electrode and thus the ions adsorption properties. This study explores the impact of gold substrates on graphene electrochemical behavior using molecular dynamics. Two systems were compared: graphene on gold (Gr@Au) and standalone graphene (Gr), with ionic liquid ([EMIM][TFSI]) as the electrolyte. The model accounts for the different metallic behavior of graphene and gold under the various applied potentials. Despite a similar electrolyte structure, the interfacial capacitance is affected, which can be attributed to different charge distributions within the electrode. The variations of the van der Waals and Coulomb energies also show some differences in the presence of gold, in particular for low potentials.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"84–92 84–92"},"PeriodicalIF":4.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-01-28DOI: 10.1021/acsnanoscienceau.4c0005710.1021/acsnanoscienceau.4c00057
Ariane K. Padilha Lorenzett, Tatiane P. Babinski, Vanderlei A. de Lima and Rubiana M. Mainardes*,
{"title":"Optimization of Eudragit RS100 Nanocapsule Formulation for Encapsulating Perillyl Alcohol and Temozolomide Using Design of Experiments","authors":"Ariane K. Padilha Lorenzett, Tatiane P. Babinski, Vanderlei A. de Lima and Rubiana M. Mainardes*, ","doi":"10.1021/acsnanoscienceau.4c0005710.1021/acsnanoscienceau.4c00057","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00057https://doi.org/10.1021/acsnanoscienceau.4c00057","url":null,"abstract":"<p >Glioblastoma, an aggressive intracranial tumor, presents significant therapeutic challenges due to the restrictive nature of the blood–brain barrier (BBB), which limits the effectiveness of conventional treatments. This study aimed to develop and optimize a nanoencapsulated system for intranasal delivery of temozolomide (TMZ) and perillyl alcohol (POH), designed to circumvent BBB limitations, utilizing Eudragit RS100 as the encapsulation matrix. A factorial design approach optimized key parameters, including Eudragit RS100 concentration, POH amount, drip rate, and organic-to-aqueous phase ratio. The nanocapsules were characterized by dynamic light scattering, zeta potential analysis, scanning electron microscopy, and high-performance liquid chromatography. The optimized nanocapsules demonstrated a mean diameter of 253 ± 52 nm and a polydispersity index of 0.145 ± 0.037, indicating uniform size distribution. A zeta potential of approximately +20 mV supported colloidal stability. Encapsulation efficiencies were 3.7% for POH and 28.5% for TMZ. This nanoencapsulated delivery system offers a promising approach for glioblastoma treatment, potentially enhancing clinical outcomes and reducing treatment-associated toxicity.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 2","pages":"70–83 70–83"},"PeriodicalIF":4.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-01-13eCollection Date: 2025-02-19DOI: 10.1021/acsnanoscienceau.4c00050
Bum Jun Kim, Derick Tseng, David Dang, Jiayun Liang, Vitali Soukhoveev, Andrei Osinsky, Ke Wang, Ho Wai Howard Lee, Zakaria Y Al Balushi
{"title":"Phase Controlled Metalorganic Chemical Vapor Deposition Growth of Wafer-Scale Molybdenum Ditelluride.","authors":"Bum Jun Kim, Derick Tseng, David Dang, Jiayun Liang, Vitali Soukhoveev, Andrei Osinsky, Ke Wang, Ho Wai Howard Lee, Zakaria Y Al Balushi","doi":"10.1021/acsnanoscienceau.4c00050","DOIUrl":"10.1021/acsnanoscienceau.4c00050","url":null,"abstract":"<p><p>Metalorganic chemical vapor deposition (MOCVD) has become a pivotal technique for developing wafer-scale transition metal dichalcogenide (TMD) 2D materials. This study investigates the impact of MOCVD growth conditions on achieving uniform and selective polymorph phase control of MoTe<sub>2</sub> over large wafers. We demonstrated the controlled and uniform growth of few-layer MoTe<sub>2</sub> in pure 2H, 1T', and mixed phases at various temperatures on up to 4 in. C-plane sapphire wafers with hexagonal boron nitride templates. At 600 °C, high-quality 2H-MoTe<sub>2</sub> was obtained within a narrow temperature window, verified with absorption and TEM analysis. In addition, we observed strong exciton-phonon coupling effects in multiwavelength Raman spectroscopy when the excitation wavelength was in resonance with the C-exciton. Our findings indicate that temperature-induced Te vacancies play a crucial role in determining the MoTe<sub>2</sub> phase. This study highlights the importance of precise control over the MOCVD growth temperature to engineer the MoTe<sub>2</sub> phase of interest for device applications.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 1","pages":"1-8"},"PeriodicalIF":4.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Nanoscience AuPub Date : 2025-01-13DOI: 10.1021/acsnanoscienceau.4c0005010.1021/acsnanoscienceau.4c00050
Bum Jun Kim, Derick Tseng, David Dang, Jiayun Liang, Vitali Soukhoveev, Andrei Osinsky, Ke Wang, Ho Wai Howard Lee and Zakaria Y. Al Balushi*,
{"title":"Phase Controlled Metalorganic Chemical Vapor Deposition Growth of Wafer-Scale Molybdenum Ditelluride","authors":"Bum Jun Kim, Derick Tseng, David Dang, Jiayun Liang, Vitali Soukhoveev, Andrei Osinsky, Ke Wang, Ho Wai Howard Lee and Zakaria Y. Al Balushi*, ","doi":"10.1021/acsnanoscienceau.4c0005010.1021/acsnanoscienceau.4c00050","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00050https://doi.org/10.1021/acsnanoscienceau.4c00050","url":null,"abstract":"<p >Metalorganic chemical vapor deposition (MOCVD) has become a pivotal technique for developing wafer-scale transition metal dichalcogenide (TMD) 2D materials. This study investigates the impact of MOCVD growth conditions on achieving uniform and selective polymorph phase control of MoTe<sub>2</sub> over large wafers. We demonstrated the controlled and uniform growth of few-layer MoTe<sub>2</sub> in pure 2H, 1T′, and mixed phases at various temperatures on up to 4 in. C-plane sapphire wafers with hexagonal boron nitride templates. At 600 °C, high-quality 2H-MoTe<sub>2</sub> was obtained within a narrow temperature window, verified with absorption and TEM analysis. In addition, we observed strong exciton–phonon coupling effects in multiwavelength Raman spectroscopy when the excitation wavelength was in resonance with the C-exciton. Our findings indicate that temperature-induced Te vacancies play a crucial role in determining the MoTe<sub>2</sub> phase. This study highlights the importance of precise control over the MOCVD growth temperature to engineer the MoTe<sub>2</sub> phase of interest for device applications.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 1","pages":"1–8 1–8"},"PeriodicalIF":4.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}