Luke T. Coward, Thu T. M. Chu, Xiaotong Li, Pin Lyu* and Oksana Love*,
{"title":"平装还是散装?Ni2+掺杂Brookite TiO2光催化剂的机理研究","authors":"Luke T. Coward, Thu T. M. Chu, Xiaotong Li, Pin Lyu* and Oksana Love*, ","doi":"10.1021/acsnanoscienceau.5c00087","DOIUrl":null,"url":null,"abstract":"<p >Solar energy, as an alternative source to catalyze chemical reactions, has been rapidly utilized and developed over the past few decades, particularly with TiO<sub>2</sub>-based semiconductor photocatalysts. Regulating the carrier dynamics under photoexcitation and controlling the interfacial reaction kinetics have been emphasized as fundamental approaches to increase the quantum yield of photocatalytic systems. Transition-metal-ion doping is a promising strategy to address these issues, although the precise roles and optimal spatial distribution of dopants remain unclear. In this systematic study, we designed surface-only, bulk-only, and surface-bulk-doped brookite TiO<sub>2</sub> nanoparticles using Ni<sup>2+</sup> as dopants and evaluated the photocatalytic performance of these doped samples based on the apparent reaction rate constants. It is demonstrated that the crystal structure, morphology, and surface composition did not change significantly after doping, and the observed enhancement in photocatalysis can be correlated to the doping positions. Continuous doping from the bulk to surface, forming the trap-to-transfer centers to mediate interfacial electron transfer, proves to be the most effective pathway. This proof-of-concept work offers a unique perspective on the transition-metal-ion-induced photocatalysis mechanism of brookite TiO<sub>2</sub> nanoparticles and will help us design more efficient photocatalytic systems.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 4","pages":"324–336"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00087","citationCount":"0","resultStr":"{\"title\":\"Surface or Bulk? Mechanistic Insights into Ni2+-Doped Brookite TiO2 Photocatalysts\",\"authors\":\"Luke T. Coward, Thu T. M. Chu, Xiaotong Li, Pin Lyu* and Oksana Love*, \",\"doi\":\"10.1021/acsnanoscienceau.5c00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solar energy, as an alternative source to catalyze chemical reactions, has been rapidly utilized and developed over the past few decades, particularly with TiO<sub>2</sub>-based semiconductor photocatalysts. Regulating the carrier dynamics under photoexcitation and controlling the interfacial reaction kinetics have been emphasized as fundamental approaches to increase the quantum yield of photocatalytic systems. Transition-metal-ion doping is a promising strategy to address these issues, although the precise roles and optimal spatial distribution of dopants remain unclear. In this systematic study, we designed surface-only, bulk-only, and surface-bulk-doped brookite TiO<sub>2</sub> nanoparticles using Ni<sup>2+</sup> as dopants and evaluated the photocatalytic performance of these doped samples based on the apparent reaction rate constants. It is demonstrated that the crystal structure, morphology, and surface composition did not change significantly after doping, and the observed enhancement in photocatalysis can be correlated to the doping positions. Continuous doping from the bulk to surface, forming the trap-to-transfer centers to mediate interfacial electron transfer, proves to be the most effective pathway. This proof-of-concept work offers a unique perspective on the transition-metal-ion-induced photocatalysis mechanism of brookite TiO<sub>2</sub> nanoparticles and will help us design more efficient photocatalytic systems.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 4\",\"pages\":\"324–336\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Surface or Bulk? Mechanistic Insights into Ni2+-Doped Brookite TiO2 Photocatalysts
Solar energy, as an alternative source to catalyze chemical reactions, has been rapidly utilized and developed over the past few decades, particularly with TiO2-based semiconductor photocatalysts. Regulating the carrier dynamics under photoexcitation and controlling the interfacial reaction kinetics have been emphasized as fundamental approaches to increase the quantum yield of photocatalytic systems. Transition-metal-ion doping is a promising strategy to address these issues, although the precise roles and optimal spatial distribution of dopants remain unclear. In this systematic study, we designed surface-only, bulk-only, and surface-bulk-doped brookite TiO2 nanoparticles using Ni2+ as dopants and evaluated the photocatalytic performance of these doped samples based on the apparent reaction rate constants. It is demonstrated that the crystal structure, morphology, and surface composition did not change significantly after doping, and the observed enhancement in photocatalysis can be correlated to the doping positions. Continuous doping from the bulk to surface, forming the trap-to-transfer centers to mediate interfacial electron transfer, proves to be the most effective pathway. This proof-of-concept work offers a unique perspective on the transition-metal-ion-induced photocatalysis mechanism of brookite TiO2 nanoparticles and will help us design more efficient photocatalytic systems.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.