Gabriel C. Halford, Sebastian Hertle, Harikrishnan N. Nambiar and Michelle L. Personick*,
{"title":"利用电化学基准,理解和发展贵金属纳米颗粒的合成","authors":"Gabriel C. Halford, Sebastian Hertle, Harikrishnan N. Nambiar and Michelle L. Personick*, ","doi":"10.1021/acsnanoscienceau.5c00051","DOIUrl":null,"url":null,"abstract":"<p >The complex chemical nature of metal nanoparticle synthesis presents obstacles for the mechanistic understanding of nanoparticle growth and predictive synthesis design, despite significant progress in this area. Real-time characterization of the chemical processes that take place throughout nanoparticle growth will enable progress toward addressing outstanding challenges in metal nanoparticle synthesis, such as mitigating synthetic reproducibility issues, defining chemical mechanisms that direct nanoparticle growth, and designing synthetic conditions for previously unachievable combinations of nanoparticle shape and composition. In this Perspective, we present open-circuit potential (OCP) measurements as an in situ, real-time method for characterizing chemical changes during nanoparticle growth and discuss the method’s strengths in comparison to and in combination with other characterization techniques. We propose the use of OCP measurements as benchmarks for troubleshooting irreproducibility and streamlining synthetic optimization. Finally, we explore possibilities for using the increased parameter space accessible by electrodeposition to accelerate the development of shape-selective nanoparticle syntheses.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 4","pages":"240–261"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00051","citationCount":"0","resultStr":"{\"title\":\"Using Electrochemistry to Benchmark, Understand, and Develop Noble Metal Nanoparticle Syntheses\",\"authors\":\"Gabriel C. Halford, Sebastian Hertle, Harikrishnan N. Nambiar and Michelle L. Personick*, \",\"doi\":\"10.1021/acsnanoscienceau.5c00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The complex chemical nature of metal nanoparticle synthesis presents obstacles for the mechanistic understanding of nanoparticle growth and predictive synthesis design, despite significant progress in this area. Real-time characterization of the chemical processes that take place throughout nanoparticle growth will enable progress toward addressing outstanding challenges in metal nanoparticle synthesis, such as mitigating synthetic reproducibility issues, defining chemical mechanisms that direct nanoparticle growth, and designing synthetic conditions for previously unachievable combinations of nanoparticle shape and composition. In this Perspective, we present open-circuit potential (OCP) measurements as an in situ, real-time method for characterizing chemical changes during nanoparticle growth and discuss the method’s strengths in comparison to and in combination with other characterization techniques. We propose the use of OCP measurements as benchmarks for troubleshooting irreproducibility and streamlining synthetic optimization. Finally, we explore possibilities for using the increased parameter space accessible by electrodeposition to accelerate the development of shape-selective nanoparticle syntheses.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 4\",\"pages\":\"240–261\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Using Electrochemistry to Benchmark, Understand, and Develop Noble Metal Nanoparticle Syntheses
The complex chemical nature of metal nanoparticle synthesis presents obstacles for the mechanistic understanding of nanoparticle growth and predictive synthesis design, despite significant progress in this area. Real-time characterization of the chemical processes that take place throughout nanoparticle growth will enable progress toward addressing outstanding challenges in metal nanoparticle synthesis, such as mitigating synthetic reproducibility issues, defining chemical mechanisms that direct nanoparticle growth, and designing synthetic conditions for previously unachievable combinations of nanoparticle shape and composition. In this Perspective, we present open-circuit potential (OCP) measurements as an in situ, real-time method for characterizing chemical changes during nanoparticle growth and discuss the method’s strengths in comparison to and in combination with other characterization techniques. We propose the use of OCP measurements as benchmarks for troubleshooting irreproducibility and streamlining synthetic optimization. Finally, we explore possibilities for using the increased parameter space accessible by electrodeposition to accelerate the development of shape-selective nanoparticle syntheses.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.