Maurelio Cabo, Nitin More, Jeffrey R Alston, Eric Laws, Rutujaa Kulkarni, Ram V Mohan, Dennis R LaJeunesse
{"title":"Insight on the Mechanical Properties of Facile Hydrophobic-Barrier-Patterned Bacterial Nanocellulose via Self-Bonding Mechanism.","authors":"Maurelio Cabo, Nitin More, Jeffrey R Alston, Eric Laws, Rutujaa Kulkarni, Ram V Mohan, Dennis R LaJeunesse","doi":"10.1021/acsnanoscienceau.4c00077","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing the mechanical and structural properties of bacterial nanocellulose (BNC) is key to its use in sustainable nanocomposites. This study employed a hot-press drying method with hydrophobic barriers, folding BNC into four layers and pressing with carbon fiber and Teflon sheets. At 120 °C, carbon fiber-pressed BNC achieved a tensile strength of 43.91 N/mm<sup>2</sup>, 13.84% higher than oven-dried samples and 43.87% higher than Teflon-pressed samples. Scanning electron microscopy (SEM), KLA-Zeta, and atomic force microscopy (AFM) analyses revealed improved self-bonding and surface roughness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed increased crystallinity and altered hydrogen bonding, enhancing stiffness and structural stability. Optical and thermal tests showed carbon fiber-pressed BNC was less transparent with moderate heat resistance, while Teflon-treated samples remained clear with higher thermal stability. These findings demonstrate that patterned hot pressing strengthens BNC's self-bonding, advancing its potential for use in structural nanocomposites, flexible electronics, and biocompatible scaffolds.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 3","pages":"128-136"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsnanoscienceau.4c00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the mechanical and structural properties of bacterial nanocellulose (BNC) is key to its use in sustainable nanocomposites. This study employed a hot-press drying method with hydrophobic barriers, folding BNC into four layers and pressing with carbon fiber and Teflon sheets. At 120 °C, carbon fiber-pressed BNC achieved a tensile strength of 43.91 N/mm2, 13.84% higher than oven-dried samples and 43.87% higher than Teflon-pressed samples. Scanning electron microscopy (SEM), KLA-Zeta, and atomic force microscopy (AFM) analyses revealed improved self-bonding and surface roughness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed increased crystallinity and altered hydrogen bonding, enhancing stiffness and structural stability. Optical and thermal tests showed carbon fiber-pressed BNC was less transparent with moderate heat resistance, while Teflon-treated samples remained clear with higher thermal stability. These findings demonstrate that patterned hot pressing strengthens BNC's self-bonding, advancing its potential for use in structural nanocomposites, flexible electronics, and biocompatible scaffolds.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.