通过自键机制研究易疏水屏障型细菌纳米纤维素的力学性能。

IF 6.3 Q2 NANOSCIENCE & NANOTECHNOLOGY
ACS Nanoscience Au Pub Date : 2025-03-20 eCollection Date: 2025-06-18 DOI:10.1021/acsnanoscienceau.4c00077
Maurelio Cabo, Nitin More, Jeffrey R Alston, Eric Laws, Rutujaa Kulkarni, Ram V Mohan, Dennis R LaJeunesse
{"title":"通过自键机制研究易疏水屏障型细菌纳米纤维素的力学性能。","authors":"Maurelio Cabo, Nitin More, Jeffrey R Alston, Eric Laws, Rutujaa Kulkarni, Ram V Mohan, Dennis R LaJeunesse","doi":"10.1021/acsnanoscienceau.4c00077","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing the mechanical and structural properties of bacterial nanocellulose (BNC) is key to its use in sustainable nanocomposites. This study employed a hot-press drying method with hydrophobic barriers, folding BNC into four layers and pressing with carbon fiber and Teflon sheets. At 120 °C, carbon fiber-pressed BNC achieved a tensile strength of 43.91 N/mm<sup>2</sup>, 13.84% higher than oven-dried samples and 43.87% higher than Teflon-pressed samples. Scanning electron microscopy (SEM), KLA-Zeta, and atomic force microscopy (AFM) analyses revealed improved self-bonding and surface roughness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed increased crystallinity and altered hydrogen bonding, enhancing stiffness and structural stability. Optical and thermal tests showed carbon fiber-pressed BNC was less transparent with moderate heat resistance, while Teflon-treated samples remained clear with higher thermal stability. These findings demonstrate that patterned hot pressing strengthens BNC's self-bonding, advancing its potential for use in structural nanocomposites, flexible electronics, and biocompatible scaffolds.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 3","pages":"128-136"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insight on the Mechanical Properties of Facile Hydrophobic-Barrier-Patterned Bacterial Nanocellulose via Self-Bonding Mechanism.\",\"authors\":\"Maurelio Cabo, Nitin More, Jeffrey R Alston, Eric Laws, Rutujaa Kulkarni, Ram V Mohan, Dennis R LaJeunesse\",\"doi\":\"10.1021/acsnanoscienceau.4c00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancing the mechanical and structural properties of bacterial nanocellulose (BNC) is key to its use in sustainable nanocomposites. This study employed a hot-press drying method with hydrophobic barriers, folding BNC into four layers and pressing with carbon fiber and Teflon sheets. At 120 °C, carbon fiber-pressed BNC achieved a tensile strength of 43.91 N/mm<sup>2</sup>, 13.84% higher than oven-dried samples and 43.87% higher than Teflon-pressed samples. Scanning electron microscopy (SEM), KLA-Zeta, and atomic force microscopy (AFM) analyses revealed improved self-bonding and surface roughness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed increased crystallinity and altered hydrogen bonding, enhancing stiffness and structural stability. Optical and thermal tests showed carbon fiber-pressed BNC was less transparent with moderate heat resistance, while Teflon-treated samples remained clear with higher thermal stability. These findings demonstrate that patterned hot pressing strengthens BNC's self-bonding, advancing its potential for use in structural nanocomposites, flexible electronics, and biocompatible scaffolds.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 3\",\"pages\":\"128-136\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnanoscienceau.4c00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsnanoscienceau.4c00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提高细菌纳米纤维素(BNC)的力学和结构性能是其在可持续纳米复合材料中应用的关键。本研究采用疏水屏障热压干燥方法,将BNC折叠成四层,用碳纤维和聚四氟乙烯片材压制。在120℃下,碳纤维压制的BNC的抗拉强度为43.91 N/mm2,比烘箱干燥样品高13.84%,比聚四氟乙烯压制样品高43.87%。扫描电子显微镜(SEM)、KLA-Zeta和原子力显微镜(AFM)分析显示,自键和表面粗糙度得到了改善。傅里叶变换红外光谱(FTIR)和x射线衍射(XRD)证实了结晶度的增加和氢键的改变,增强了刚度和结构稳定性。光学和热测试表明,碳纤维压制的BNC透明度较低,耐热性中等,而聚四氟乙烯处理的样品保持透明,热稳定性较高。这些发现表明,图案热压增强了BNC的自粘合,提高了其在结构纳米复合材料、柔性电子产品和生物相容性支架中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight on the Mechanical Properties of Facile Hydrophobic-Barrier-Patterned Bacterial Nanocellulose via Self-Bonding Mechanism.

Enhancing the mechanical and structural properties of bacterial nanocellulose (BNC) is key to its use in sustainable nanocomposites. This study employed a hot-press drying method with hydrophobic barriers, folding BNC into four layers and pressing with carbon fiber and Teflon sheets. At 120 °C, carbon fiber-pressed BNC achieved a tensile strength of 43.91 N/mm2, 13.84% higher than oven-dried samples and 43.87% higher than Teflon-pressed samples. Scanning electron microscopy (SEM), KLA-Zeta, and atomic force microscopy (AFM) analyses revealed improved self-bonding and surface roughness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed increased crystallinity and altered hydrogen bonding, enhancing stiffness and structural stability. Optical and thermal tests showed carbon fiber-pressed BNC was less transparent with moderate heat resistance, while Teflon-treated samples remained clear with higher thermal stability. These findings demonstrate that patterned hot pressing strengthens BNC's self-bonding, advancing its potential for use in structural nanocomposites, flexible electronics, and biocompatible scaffolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信