Mikelis Marnauza, Robin Sjökvist, Azemina Kraina, Daniel Jacobsson and Kimberly A. Dick*,
{"title":"In Situ Study of Axial GaSb/GaAs Nanowire Heterostructure Formation","authors":"Mikelis Marnauza, Robin Sjökvist, Azemina Kraina, Daniel Jacobsson and Kimberly A. Dick*, ","doi":"10.1021/acsnanoscienceau.5c0001510.1021/acsnanoscienceau.5c00015","DOIUrl":null,"url":null,"abstract":"<p >Combining multiple III–V materials into axial nanowire heterostructures has enabled the fabrication of custom nanowire-based devices useful for a wide range of applications. However, our ability to form axial heterostructures between arbitrary combinations of III–V compounds is impeded by a lack of information on the dynamics of the heterojunction formation process, often resulting in suboptimal heterostructure morphologies, particularly for materials including Sb. In this work, we utilize environmental transmission electron microscopy to examine the formation of GaSb/GaAs heterojunctions in Au-seeded nanowires <i>in situ</i>. We demonstrate that the growth parameter window for successful GaSb/GaAs heterostructure formation is very narrow and requires the growth of a ternary GaSb<sub><i>x</i></sub>As<sub>1–<i>x</i></sub> segment. Furthermore, we show that as the nanowire changes the composition from GaSb to GaAs, the nanoparticle and nanowire morphologies are highly dynamic. At the end of the transition, we observe that the nanoparticle volume is halved and the nanowire diameter is reduced from ≈40 to ≈30 nm at the liquid–solid interface. Moreover, the nanowire growth rate increases by a factor of 7, when GaAs composition is reached, at our optimized growth conditions. Additionally, we are able to observe that the change in the crystal phase from GaSb zincblende (ZB) to GaAs wurtzite (WZ) happens via a mixed ZB-4H-WZ regime and is dependent not only on the nanowire composition but also on the vapor-phase composition in the growth chamber. These results offer unique insight into the formation dynamics of axial nanowire heterostructures, elucidating the interplay between all phases and growth species.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 3","pages":"208–216 208–216"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.5c00015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining multiple III–V materials into axial nanowire heterostructures has enabled the fabrication of custom nanowire-based devices useful for a wide range of applications. However, our ability to form axial heterostructures between arbitrary combinations of III–V compounds is impeded by a lack of information on the dynamics of the heterojunction formation process, often resulting in suboptimal heterostructure morphologies, particularly for materials including Sb. In this work, we utilize environmental transmission electron microscopy to examine the formation of GaSb/GaAs heterojunctions in Au-seeded nanowires in situ. We demonstrate that the growth parameter window for successful GaSb/GaAs heterostructure formation is very narrow and requires the growth of a ternary GaSbxAs1–x segment. Furthermore, we show that as the nanowire changes the composition from GaSb to GaAs, the nanoparticle and nanowire morphologies are highly dynamic. At the end of the transition, we observe that the nanoparticle volume is halved and the nanowire diameter is reduced from ≈40 to ≈30 nm at the liquid–solid interface. Moreover, the nanowire growth rate increases by a factor of 7, when GaAs composition is reached, at our optimized growth conditions. Additionally, we are able to observe that the change in the crystal phase from GaSb zincblende (ZB) to GaAs wurtzite (WZ) happens via a mixed ZB-4H-WZ regime and is dependent not only on the nanowire composition but also on the vapor-phase composition in the growth chamber. These results offer unique insight into the formation dynamics of axial nanowire heterostructures, elucidating the interplay between all phases and growth species.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.