WearPub Date : 2024-09-05DOI: 10.1016/j.wear.2024.205563
M. Neslušan , R. Bašťovanský , R. Čep , P. Minárik , K. Trojan , Z. Florková
{"title":"Phase transition in AISI 304 during rolling contact wear and its monitoring via Barkhausen noise emission","authors":"M. Neslušan , R. Bašťovanský , R. Čep , P. Minárik , K. Trojan , Z. Florková","doi":"10.1016/j.wear.2024.205563","DOIUrl":"10.1016/j.wear.2024.205563","url":null,"abstract":"<div><p>This study investigates the phase transition of austenite into strain-induced martensite during the long-term rolling contact wear. The transformation of the non-ferromagnetic austenite to the ferromagnetic martensite is studied as a function of rolling contact duration under the constant roller load and rotation. X-ray diffraction technique and scanning electron microscopy demonstrate that the intensity and extent of strain-induced phase transformation are progressively growing along the rolling duration. Furthermore, it is also found that the extent of this transformation is non-homogenous with respect to the produced wear track width when the highest intensity can be found near the grove centre, and a progressive decrease is detected towards the wear track edge. Compressive residual stresses are produced in both crystalline phases. However, their nearly unaffected amplitude with the rolling duration for the martensite phase is contrasted with the gradually decreasing amplitude of the austenite phase, which indicates the thermal effect. The surface temperature increases due to friction, plastic deformation and the phase transition. It has been proved that the Barkhausen noise technique integrates signals from the whole wear track width as well as quite deep regions below the wear track surface. Barkhausen noise exhibits continuous and progressive increase with the rolling duration as it is contrasted with the X-ray diffraction. Consequently, the Barkhausen noise technique was found to be the more reasonable experimental technique to study the progressive propagation of the phase transition into the bulk material than the X-ray diffraction.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205563"},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-09-05DOI: 10.1016/j.wear.2024.205559
Tingting Niu , Lutong Zhou , Haidong Hu , Wei Gao , Yong Sun , Guodong Zou , Qun Zu , Houwen Chen , Peng Wang , Qiuming Peng
{"title":"Nano-twinned silicon in Al-Si alloys for high wear-resistance","authors":"Tingting Niu , Lutong Zhou , Haidong Hu , Wei Gao , Yong Sun , Guodong Zou , Qun Zu , Houwen Chen , Peng Wang , Qiuming Peng","doi":"10.1016/j.wear.2024.205559","DOIUrl":"10.1016/j.wear.2024.205559","url":null,"abstract":"<div><p>Wear-failure is the most common damage for power transmission components in the field of engineering materials, constituting approximately one-fourth in service loss. The development of high wear-resistant Al alloys plays a crucial role in reducing energy demand and weight, and then attributes to the achievement of dual-carbon target. Here we report a novel strategy to develop outstanding wear-resistant (the coefficient of friction of 0.31) Al-10 wt%Si alloys at room temperature, based on the formation of multiple parallel {111} twins and hierarchical {111}-{111} double twins by a route of combining ultrahigh pressure solid solution and electropulsing assisted aging (HPEP), which overwhelms all values of Al alloys, even Ti alloys and high entropy alloys reported so far. The microstructure, formation process and wear-resistant mechanism of nano-twinned Si have been clarified by transmission electron microscopy observations, molecule dynamics simulations and the first principles calculations. It demonstrates that the interactive nano-twinned Si structures are mainly introduced through twin-twin collision or the phase/matrix interface prohibition of twin motion, which are effective to restrain atom separation in contrast to eutectic Si perfect crystal, resulting in homogeneous wear-loss and long operation life. Those new results provide insights towards designing wear-resistant materials with high mechanical properties.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205559"},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-09-04DOI: 10.1016/j.wear.2024.205561
Z.X. Li , L.M. Zhang , W. Wang , Z.K. Li , Y. Zhang , A.L. Ma , Y.G. Zheng
{"title":"New insights into the damage mechanism of a Zr-Ti based bulk metallic glass under cavitation erosion in deionized water","authors":"Z.X. Li , L.M. Zhang , W. Wang , Z.K. Li , Y. Zhang , A.L. Ma , Y.G. Zheng","doi":"10.1016/j.wear.2024.205561","DOIUrl":"10.1016/j.wear.2024.205561","url":null,"abstract":"<div><p>Bulk metallic glass (BMG), also known as amorphous alloy, which is almost free of structural defects such as grain boundaries and dislocations, is expected to achieve superior cavitation erosion (CE) resistance due to possessing high hardness, elastic modulus and superior corrosion resistance. Compared with the extensively studied crystalline alloys, the damage mechanism of amorphous alloys under CE remains unclear. Herein, the CE behavior and damage mechanism of a Zr-Ti based BMG in deionized water was systematically investigated. Relevant results showed that Zr-Ti based BMG exhibited robust resistance to CE in deionized water. The incubation period of CE was found to be about 4 h, which was significantly longer than that of stainless steels, copper alloys and titanium alloys. Moreover, grazing incidence X-ray diffraction analysis indicated that crystallization was absent throughout the entire CE process. Differential scanning calorimetry demonstrated an increasing free volume of BMG with prolonged CE time, which further led to the formation of micro-porosity by the free volume aggregation, and eventually gave rise to the CE damage.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205561"},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-09-03DOI: 10.1016/j.wear.2024.205557
Taimin Chen , Caichao Zhu , Huaiju Liu , Kai Ma , Wei Zhang
{"title":"The PVT limit for gear scuffing assessment","authors":"Taimin Chen , Caichao Zhu , Huaiju Liu , Kai Ma , Wei Zhang","doi":"10.1016/j.wear.2024.205557","DOIUrl":"10.1016/j.wear.2024.205557","url":null,"abstract":"<div><p>The growing interest in gear scuffing research primarily stems from the escalating standards and operation requirements in aero-engines and electric vehicles, particularly under high-temperature, high-speed, and heavy-load conditions. Existing calculation standards for gear scuffing often deviate when evaluating the load-carrying capacity under different rotational speeds or oil temperatures, thus undermining the reliability of gear scuffing assessments. To address this, thirty-five sets of gear scuffing experiments were conducted with different materials, manufacturing processes, and lubrication conditions. A new evaluation method based on the pressure-velocity-temperature (<em>PVT</em>) limit was proposed for assessing gear scuffing resistance. Using a non-dominated genetic algorithm, exponent coefficients for the contact pressure <em>P</em>, sliding velocity <em>V</em>, and lubricant temperature <em>T</em> were determined. The results demonstrated that the proposed <em>PVT</em> limit effectively evaluates gear scuffing resistance across various conditions. The <em>PVT</em> limits across different operating scenarios, under the same material, manufacturing process, and lubrication conditions, showed a maximum deviation of 6.6%. Conversely, the scuffing temperatures calculated using ISO 6336-20-2017 and AGMA 925-A03-2003 standards deviate from experimental results by up to 36.7% and 32.8%, respectively. Further application of the <em>PVT</em> limit to an aero-engine accessory gearbox confirmed the practical applicability of the proposed method.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205557"},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-09-01DOI: 10.1016/j.wear.2024.205553
Peng Han , Qiang Wang , Wenjuan Niu , Nan Li , Runling Qian , Mingfan Wan
{"title":"Multi-layer formation by oxidation and solid-state crystallization of cold sprayed amorphous coatings during dry sliding wear","authors":"Peng Han , Qiang Wang , Wenjuan Niu , Nan Li , Runling Qian , Mingfan Wan","doi":"10.1016/j.wear.2024.205553","DOIUrl":"10.1016/j.wear.2024.205553","url":null,"abstract":"<div><p>Amorphous alloy coatings, known for the exceptional wear resistance, have emerged as a key solution for enhancing the wear performance of magnesium alloys under harsh environments. In this study, Fe-based amorphous alloy coatings were deposited on magnesium alloy by cold spraying technology, and the influence of microstructural evolution on the wear performance of coatings under dry sliding wear conditions was discussed. The results showed that a dense adherent oxide layer with a thickness of ∼700 nm comprising nanograins of less than 8 nm was formed at the outmost surface, which played a role of self-lubricating. Underneath, a 1 μm thick nanocrystalline-amorphous layer with nanograins of ∼20 nm dispersed in the amorphous alloy matrix was formed through in-situ crystallization induced by flash temperature. This composite structure prevented the formation of shear bands in amorphous alloys and enhanced the durability. Therefore, the transition from abrasive wear to adhesive wear was a consequence of the microstructural evolution from a dual-phase composite layer to a self-lubricating oxide layer.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205553"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-08-30DOI: 10.1016/j.wear.2024.205554
A.M. Ventura Cervellón , M. Varga , M. Rodríguez Ripoll , S.J. Eder
{"title":"Resolving high-strain-rate scratch behavior of Ti6Al4V in experiment and meshless simulation","authors":"A.M. Ventura Cervellón , M. Varga , M. Rodríguez Ripoll , S.J. Eder","doi":"10.1016/j.wear.2024.205554","DOIUrl":"10.1016/j.wear.2024.205554","url":null,"abstract":"<div><p>The outstanding strength-to-weight ratio and corrosion resistance of titanium have made it the material of choice in the aerospace industry and medicine. The alpha–beta alloy Ti6Al4V is particularly preferred for its excellent mechanical and bio-compatible properties. Despite its advantages, the low thermal conductivity and poor tribological performance of titanium pose significant challenges during manufacturing and in operation. This research offers deep insights into the high strain rate behavior of Ti6Al4V under abrasive load, such as e.g. experienced in machining, by modifying the standard scratch test setup and using optimized Johnson–Cook material parameters to perform Material Point Method (MPM) simulations. The MPM simulations provide accurate predictions of the data gathered through high strain rate scratch experiments. We found an increase in the von Mises stress distribution as well as the normal and tangential forces required to perform a scratch of the same depth as the strain rate increases. The morphology of the scratch profiles also showed an increase in the height of the ridges that form as the scratching speed increases. These findings are in line with the increase in yield strength and work hardening with growing strain rate. This study bridges the gap between simulation models and experimental observations by providing insights for improved machining strategies and surface treatments that can enhance the performance of Ti6Al4V in demanding applications.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205554"},"PeriodicalIF":5.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043164824003193/pdfft?md5=c90070c6cf950653a8033bb5177e95a1&pid=1-s2.0-S0043164824003193-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-08-30DOI: 10.1016/j.wear.2024.205556
F. Steinweg , A. Mikitisin , J.-L. Zhang , T.E. Weirich , J. Wang , D. Chauhan , A. Schwedt , S. Richter , D. Zander , J. Mayer , C. Broeckmann
{"title":"Discovery of white etching areas in high nitrogen bearing steel X30CrMoN15-1: A novel finding in rolling contact fatigue analysis","authors":"F. Steinweg , A. Mikitisin , J.-L. Zhang , T.E. Weirich , J. Wang , D. Chauhan , A. Schwedt , S. Richter , D. Zander , J. Mayer , C. Broeckmann","doi":"10.1016/j.wear.2024.205556","DOIUrl":"10.1016/j.wear.2024.205556","url":null,"abstract":"<div><div>White etching areas (WEA) and white etching cracks (WEC) are frequently linked to premature bearing failure in conventional high carbon bearing steels like 100Cr6 (SAE 52100). In contrast, no WEA/WEC has yet been reported for the high nitrogen bearing steel X30CrMoN15-1 (SAE AMS 5898). Thus, the present study proves for the first time that X30CrMoN15-1 is also susceptible to develop WEA/WEC under rolling contact fatigue (RCF) when pre-charged with hydrogen. RCF tests conducted in parallel without hydrogen pre-charging resulted in RCF damage only, which identifies hydrogen as an active agent for WEA/WEC formation in X30CrMoN15-1. These findings correspond to the fact that hydrogen diffusion during RCF is often considered to cause or accelerate the formation of WEA/WEC. Additionally, it is observed that the M<sub>2</sub>(C, N) and M<sub>23</sub>C<sub>6</sub> precipitates of the martensitic microstructure of the X30CrMoN15-1 do not entirely decompose during the WEA formation process as observed for M<sub>3</sub>C precipitates in 100Cr6. In conclusion, the results for X30CrMoN15-1 strongly suggest that the formation of WEA is driven by a hydrogen-activated local severe plastic deformation process, which initiates continuous dynamic recrystallisation, leading to the characteristic nano-ferritic grains observed in WEA. Also, the highly stable and self-regenerating passive chromium-oxide layer of X30CrMoN15-1 mitigates the risk of WEA/WEC failure during typical RCF operation by hindering the formation and adsorption of ionic hydrogen. Hence, this study emphasises the importance of protecting the base material against hydrogen ingress to delay WEA/WEC formation.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205556"},"PeriodicalIF":5.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Through-thickness particle distribution, microstructure evolution and tribological performance of B4C/BN-AA6061 composite via friction stir processing","authors":"Jin-song Yang, Zong-an Luo, Xin Zhang, Ming-kun Wang, Zhao-song Liu, Guang-ming Xie, Guo-dong Wang","doi":"10.1016/j.wear.2024.205555","DOIUrl":"10.1016/j.wear.2024.205555","url":null,"abstract":"<div><p>In this study, we investigated the interactions between BN and B<sub>4</sub>C particles in particle reinforced Al matrix composites (PRAMCs) during friction stir processing (FSP), focusing on particle distribution, microstructure evolution, hardness, and wear resistance. PRAMCs were fabricated with BN accounting for 0 wt%, 10 wt%, 20 wt%, 30 wt% and 100 wt% of the reinforcement particles. Optical microscopy (OM) and scanning electron microscopy (SEM) revealed that particle distribution varied through thickness, becoming more inhomogeneous with increasing BN mass ratio. The most uniform distribution was noted 3 mm beneath the surface, particularly in the BN-30%-3 mm sample. This sample also showed improved homogeneity in B<sub>4</sub>C distribution, as confirmed by the box-counting (BC) method. The refined grain structure due to particle stimulated nucleation (PSN) and Zener pinning contributed to an average hardness of 96.67 HV in the BN-30%-3 mm sample, significantly enhancing wear resistance. The wear rate in this sample was reduced by 97.2 % compared to the FSP-3 mm sample, likely due to finer grains, higher hardness, and increased reinforcement, which collectively reduced adhesion and fatigue wear.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205555"},"PeriodicalIF":5.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-08-22DOI: 10.1016/j.wear.2024.205552
Domenico Antonio Rita , Stefano Candeo , Priyadarshini Jayashree , Ana Paula Gomes Nogueira , Emiliano Rustighi , Giovanni Straffelini
{"title":"Comparative analysis of pin-on-disc and inertia-dynamometer sliding tests on a friction material","authors":"Domenico Antonio Rita , Stefano Candeo , Priyadarshini Jayashree , Ana Paula Gomes Nogueira , Emiliano Rustighi , Giovanni Straffelini","doi":"10.1016/j.wear.2024.205552","DOIUrl":"10.1016/j.wear.2024.205552","url":null,"abstract":"<div><p>The development of modern brake systems requires the assessment of multiple aspects. Among these, parameters related to the tribological behaviour, vibration, and particulate matter emission are typically evaluated using inertia dynamometers and tribometers. While these two testing systems have been previously compared regarding emissions and tribological behaviours, vibrations were not compared, nor have all these aspects been examined simultaneously. This study investigates the scale effects between a pin-on-disc tribometer and a reduced-scale dynamometer operating under dragging conditions with two levels of pressure and velocity, and a disc temperature not exceeding 260 °C. Regarding the vibration, the pin-on-disc exhibited higher and broader values in the normal direction, 1.3–15.5 m/s<sup>2</sup>, than the reduced-scale dynamometer, 0.37–0.42 m/s<sup>2</sup>, while the tangential vibrations exceeded those in the normal direction in both systems. The wear rates in the two systems were overall similar, in the range of 1–4 e−14 m<sup>2</sup>/N. During the tests the disc temperature in the dynamometer increased at a higher rate compared to the pin-on-disc, affecting the tribological and emission behaviours: steady state values were obtained only in the pin-on-disc tests. The particulate concentration values observed during dynamometer tests better correlated with the peak values from pin-on-disc tests rather than with the steady-state values. This study highlights the importance of including transient values in the evaluation of pin-on-disc testing.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205552"},"PeriodicalIF":5.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WearPub Date : 2024-08-16DOI: 10.1016/j.wear.2024.205549
Haisheng Li , Yefei Li , Qiaoling Zheng , Huicong Zhao , Dawei Yi , Yihui Wang , Peipei He , Yanan Chen
{"title":"Influence of structure parameters on the tribological properties of MoB/Cu laminated composites","authors":"Haisheng Li , Yefei Li , Qiaoling Zheng , Huicong Zhao , Dawei Yi , Yihui Wang , Peipei He , Yanan Chen","doi":"10.1016/j.wear.2024.205549","DOIUrl":"10.1016/j.wear.2024.205549","url":null,"abstract":"<div><p>Strong-bonding MoB/Cu laminated (MCL) composites are fabricated by the hot-press method at 1030 °C for 1 h under 20 MPa pressure. The microstructure, tribological properties, and elemental microanalysis are systematically investigated. The structure parameters of laminated composites play a key role in the properties of friction and wear resistance. The average friction coefficient is below 0.3 and the wear rate is almost one order of magnitude lower when the measured ratio of copper thickness to MoB thickness is below 4, compared with the sample whose λ equals 13. The primary phases of MCL are Al<sub>2</sub>O<sub>3</sub>, Cu(Al), and MoB. They helped the lubricating film to form on the worn surface during the wear process. These tribo-films effectively moderate the wear while safeguarding the metal matrix.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205549"},"PeriodicalIF":5.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}