Water最新文献

筛选
英文 中文
Effects of Ditch Water and Yellow River Irrigation on Saline–Alkali Characteristics of Soil and Paddy 沟渠水和黄河水灌溉对土壤和水稻盐碱特性的影响
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-13 DOI: 10.3390/w16182598
Liqin Fan, Jingli Shen, Xu Wang, Yonghong Zhang
{"title":"Effects of Ditch Water and Yellow River Irrigation on Saline–Alkali Characteristics of Soil and Paddy","authors":"Liqin Fan, Jingli Shen, Xu Wang, Yonghong Zhang","doi":"10.3390/w16182598","DOIUrl":"https://doi.org/10.3390/w16182598","url":null,"abstract":"This study examined the agricultural water resource shortage and abundant ditch water resources in the Yinbei region of Ningxia. The effects of ditch water and Yellow River irrigation on the saline–alkali characteristics of soil and paddy were investigated using field monitoring and indoor detection methods in Pingluo County, Ningxia (106°31′ E, 38°51′ N). In addition to monitoring ditch water, four treatment groups were established: direct ditch water irrigation (T1), mixed ditch water and Yellow River water irrigation (T2), alternate ditch water and Yellow River water irrigation (T3), and irrigation solely with Yellow River water (CK). The results show the following: (1) The salinity of ditch water samples collected from the experimental field during the rice growth period was less than 1.60 g/L, and the pH of the samples was lower than 8.62; thus, they were classified as mildly brackish water. The application of ditch water irrigation did not result in soil saline–alkali aggravation and the accumulation of excessive amounts of heavy metals in soils and paddies in Pingluo County, Ningxia. (2) The rice yields for the CK, T1, T2, and T3 treatments were 10,437.5, 8318.4, 9182.1, and 9016.2 kg/hm2, respectively. Compared with Yellow River irrigation, the rice yields for the T1, T2, and T3 treatments were 20.3, 12.1, and 13.6% lower than that of CK, respectively, with minimal differences observed among them. Hence, under the condition of a water resource shortage in the Yellow River region, ditch water can be appropriately applied for mixed or alternate irrigation to ensure food security. This research has revealed the influences of ditch water irrigation on the saline–alkali properties of soil and the heavy metal contents of paddies.","PeriodicalId":23788,"journal":{"name":"Water","volume":"25 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Assessment of Climate Change Impacts on River Water Availability for Irrigation, Wheat Crop Area Coverage, and Irrigation Canal Hydraulic Capacity of Large-Scale Irrigation Scheme in Nepal 气候变化对尼泊尔大型灌溉计划的灌溉河水可用性、小麦作物覆盖面积和灌渠水力的综合影响评估
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-13 DOI: 10.3390/w16182595
Santosh Kaini, Matthew Tom Harrison, Ted Gardner, Ashok K. Sharma
{"title":"Comprehensive Assessment of Climate Change Impacts on River Water Availability for Irrigation, Wheat Crop Area Coverage, and Irrigation Canal Hydraulic Capacity of Large-Scale Irrigation Scheme in Nepal","authors":"Santosh Kaini, Matthew Tom Harrison, Ted Gardner, Ashok K. Sharma","doi":"10.3390/w16182595","DOIUrl":"https://doi.org/10.3390/w16182595","url":null,"abstract":"While atmospheric warming intensifies the global water cycle, regionalised effects of climate change on water loss, irrigation supply, and food security are highly variable. Here, we elucidate the impacts of the climate crisis on irrigation water availability and cropping area in Nepal’s largest irrigation scheme, the Sunsari Morang Irrigation Scheme (SMIS), by accounting for the hydraulic capacity of existing canal systems, and potential changes realised under future climates. To capture variability implicit in climate change projections, we invoke multiple Representative Concentration Pathways (RCPs; 4.5 and 8.5) across three time horizons (2016–2045, 2036–2065, and 2071–2100). We reveal that although climate change increases water availability to agriculture from December through March, the designed discharge of 60 m3/s would not be available in February-March for both RCPs under all three time horizons. Weed growth, silt deposition, and poor maintenance have reduced the current canal capacity from the design capacity of 60 m3/s to 53 m3/s up to 10.7 km from the canal intake (representing a 12% reduction in the discharge capacity of the canal). Canal flow is further reduced to 35 m3/s at 13.8 km from canal intake, representing a 27% reduction in flow capacity relative to the original design standards. Based on climate projections, and assuming ceteris paribus irrigation infrastructure, total wheat cropping area could increase by 12–19%, 23–27%, and 12–35% by 2016–2045, 2036–2065, and 2071–2100, respectively, due to increased water availability borne by the changing climate. The case for further investment in irrigation infrastructure via water diversion, or installation of efficient pumps at irrigation canal intakes is compelling. Such investment would catalyse a step-change in the agricultural economy that is urgently needed to sustain the Nepalese economy, and thus evoke beneficial cascading implications for global food security.","PeriodicalId":23788,"journal":{"name":"Water","volume":"9 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin 气候变化对湄公河上游流域水资源保护能力的影响
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-13 DOI: 10.3390/w16182601
Yuanyuan Luo, Zhaodan Cao, Xiaoer Zhao, Chengqiu Wu
{"title":"Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin","authors":"Yuanyuan Luo, Zhaodan Cao, Xiaoer Zhao, Chengqiu Wu","doi":"10.3390/w16182601","DOIUrl":"https://doi.org/10.3390/w16182601","url":null,"abstract":"Investigations into the impacts of climate change on water conservation capacity in the upper Mekong River Basin (UMRB) are important for the region’s sustainability. However, quantitative studies on isolating the individual contribution of climate change to water conservation capacity are lacking. In this study, various data-driven SWAT models were developed to quantitatively analyze the unique impact of climate change on water conservation capacity in the UMRB. The results reveal the following: (1) From 1981 to 2020, the annual water conservation capacity ranged from 191.6 to 392.9 mm, showing significant seasonal differences with the values in the rainy season (218.6–420.3 mm) significantly higher than that in the dry season (−57.0–53.2 mm). (2) The contribution of climate change to water conservation capacity is generally negative, with the highest contribution (−65.2%) in the dry season, followed by the annual (−8.7%) and the rainy season (−8.1%). (3) Precipitation, followed by evaporation and surface runoff, emerged as the critical factor affecting water conservation capacity changes in the UMRB. This study can provide insights for water resources management and climate change adaptations in the UMRB and other similar regions in the world.","PeriodicalId":23788,"journal":{"name":"Water","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flood Modeling of the June 2023 Flooding of Léogâne City by the Overflow of the Rouyonne River in Haiti 2023 年 6 月海地鲁约讷河泛滥导致莱奥甘市洪水泛滥的洪水模拟
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-13 DOI: 10.3390/w16182594
Rotchild Louis, Yves Zech, Adermus Joseph, Nyankona Gonomy, Sandra Soares-Frazao
{"title":"Flood Modeling of the June 2023 Flooding of Léogâne City by the Overflow of the Rouyonne River in Haiti","authors":"Rotchild Louis, Yves Zech, Adermus Joseph, Nyankona Gonomy, Sandra Soares-Frazao","doi":"10.3390/w16182594","DOIUrl":"https://doi.org/10.3390/w16182594","url":null,"abstract":"Evaluating flood risk though numerical simulations in areas where hydrometric and bathymetric data are scarcely available is a challenge. This is, however, of paramount importance, particularly in urban areas, where huge losses of human life and extensive damage can occur. This paper focuses on the 2–3 June 2023 event at Léogâne in Haiti, where the Rouyonne River partly flooded the city. Water depths in the river have been recorded since April 2022, and a few discharges were measured manually, but these were not sufficient to produce a reliable rating curve. Using a uniform-flow assumption combined with the Bayesian rating curve (BaRatin) method, it was possible to extrapolate the existing data to higher discharges. From there, a rainfall–runoff relation was developed for the site using a distributed hydrological model, which allowed the discharge of the June 2023 event to be determined, which was estimated as twice the maximum conveying capacity of the river in the measurement section. Bathymetric data were obtained using drone-based photogrammetry, and two-dimensional simulations were carried out to represent the flooded area and the associated water depths. By comparing the water depths of 21 measured high-water marks with the simulation results, we obtained a Kling–Gupta Efficiency (KGE) and Nash–Sutcliffe Efficiency (NSE) values of 0.890 and 0.882, respectively. This allows us to conclude that even when only scarce official data are available, it is possible to use field data acquired by low-cost methodologies to build a model that is sufficiently accurate and that can be used by flood managers and decision makers to assess flood risk and vulnerability in Haiti.","PeriodicalId":23788,"journal":{"name":"Water","volume":"48 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding 易受山洪暴发影响的城市地区生物蓄水池的水文缓解效果
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-13 DOI: 10.3390/w16182597
Brian G. Laub, Eugene Von Bon, Lani May, Mel Garcia
{"title":"The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding","authors":"Brian G. Laub, Eugene Von Bon, Lani May, Mel Garcia","doi":"10.3390/w16182597","DOIUrl":"https://doi.org/10.3390/w16182597","url":null,"abstract":"The hydrologic performance and cost-effectiveness of green stormwater infrastructure (GSI) in climates with highly variable precipitation is an important subject in urban stormwater management. We measured the hydrologic effects of two bioretention basins in San Antonio, Texas, a growing city in a region prone to flash flooding. Pre-construction, inflow, and outflow hydrographs of the basins were compared to test whether the basins reduced peak flow magnitude and altered the metrics of flashiness, including rate of flow rise and fall. We determined the construction and annual maintenance cost of one basin and whether precipitation magnitude and antecedent moisture conditions altered hydrologic mitigation effectiveness. The basins reduced flashiness when comparing inflow to outflow and pre-construction to outflow hydrographs, including reducing peak flow magnitudes by >80% on average. Basin performance was not strongly affected by precipitation magnitude or antecedent conditions, though the range of precipitation magnitudes sampled was limited. Construction costs were higher than previously reported projects, but annual maintenance costs were similar and no higher than costs to maintain an equivalent landscaped area. Results indicate that bioretention basins effectively mitigate peak flow and flashiness, even in flash-flood-prone environments, which should benefit downstream ecosystems. The results provide a unique assessment of bioretention basin performance in flash-flood-prone environments and can inform the optimization of cost-effectiveness when implementing GSI at watershed scales in regions with current or future similar precipitation regimes.","PeriodicalId":23788,"journal":{"name":"Water","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Hydrologic Response of a Major Drinking Water Reservoir to Extreme Flood Events and Climate Change Using SWAT and OASIS 利用 SWAT 和 OASIS 评估一个主要饮用水水库对极端洪水事件和气候变化的水文响应
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-11 DOI: 10.3390/w16182572
Supria Paul, Soni M. Pradhanang, Thomas B. Boving
{"title":"Assessing the Hydrologic Response of a Major Drinking Water Reservoir to Extreme Flood Events and Climate Change Using SWAT and OASIS","authors":"Supria Paul, Soni M. Pradhanang, Thomas B. Boving","doi":"10.3390/w16182572","DOIUrl":"https://doi.org/10.3390/w16182572","url":null,"abstract":"Extreme flood events present a significant challenge for operators and managers of large drinking water reservoirs. Detailed flood response analysis can predict the hydrology response of a reservoir to changing climate conditions and can aid in managing the reservoir in anticipation of extreme events. Herein, the Soil and Water Assessment Tool (SWAT), a watershed model, was used in conjunction with a reservoir management model, the Operational Analysis and Simulation of Integrated Systems (OASIS) model, to evaluate extreme flood events across a set of initial reservoir storage capacities across various CMIP6 climate scenarios. The SWAT model was calibrated and validated with PRISM climate data in conjunction with land and soil cover data and multi-site gauged stream discharges. The validated model demonstrated satisfactory performance (NSE = 0.55 and R2 = 0.56) for total reservoir inflow. The resulting inflow values from SWAT were utilized to set up a calibrated/validated OASIS model (NSE = 0.55 and R2 = 0.68). OASIS was then used to assess alternative operating rules for the reservoir under varying climate scenarios (RCP4.5 and RCP8.5) and extreme events (synthetic hurricanes). Focusing on a major reservoir in the Northeastern United States, the analysis of the reservoir response was based on (1) reservoir volume–elevation curve, (2) daily reservoir inflow, (3) daily precipitation, (4) spillway flow, and (5) reservoir evaporation. Projected future scenarios indicate a >20% increase in precipitation in April compared to historical records, coupled with likely reduced runoff from November to March. With extreme conditions most likely in the month of April, RCP4.5 and RCP8.5 projections suggest that most scenarios result in a 10–15% increase in the mean of 3D30Y runoff volumes, and a 150% increase under the most extreme conditions. For 7D30Y runoff volumes in April, the RCP4.5 and RCP8.5 analyses reveal an increased likelihood of the reservoir elevation reaching overspill flow levels during the latter half of the simulation period (2020 to 2080). Our findings indicate that simulations with SWAT coupled with OASIS can assist reservoir managers in regulating water levels in anticipation of extreme precipitation events.","PeriodicalId":23788,"journal":{"name":"Water","volume":"8 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification 用于水净化的氧化锌/油橄榄树胶接枝 L-蛋氨酸功能化聚苯胺仿生复合材料
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-11 DOI: 10.3390/w16182576
Mohd Saquib Tanweer, Zafar Iqbal, Adil Majeed Rather, Masood Alam
{"title":"Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification","authors":"Mohd Saquib Tanweer, Zafar Iqbal, Adil Majeed Rather, Masood Alam","doi":"10.3390/w16182576","DOIUrl":"https://doi.org/10.3390/w16182576","url":null,"abstract":"This study evaluates the preparation of novel ternary functional adsorbents based on polyaniline, zinc oxide nanoparticles, and moringa oleifera gum to produce zinc oxide/Moringa oleifera gum-grafted L-methionine-functionalized polyaniline bionanocomposites (ZM-g-Pani) and employed to sequestrate divalent metal ions (Cd2+, Hg2+ and Pb2+) from wastewater samples. The morphological and structural properties of ZM-g-Pani were exploited using FT-IR, FE-SEM/EDS, TEM, and XRD. FT-IR and FE-SEM studies show that the as prepared nanocomposite has an abundant number of reactive groups and a porous structure, thus demonstrating outstanding divalent metal cation removal. FT-IR study confirms that the attachment of L-methionine to polyaniline is facilitated by the C-S linkage. Both TEM and FE-SEM techniques confirmed the clustered granules of ZnO over the surface of polyaniline, which ultimately provided more surface area to adsorb metal ions. The study demonstrated that Cd2+, Hg2+ and Pb2+ ions could undergo physical sorption and chemisorption simultaneously during the adsorption process. The maximum adsorption capacity was 840.33, 497.51, and 497.51 mg/g for Cd2+, Hg2+, and Pb2+, respectively. The impact of co-existing ions, including NO3–, PO43–, SO42–, Cl–, Na+, Cu2+, and Al3+, showed that there were no notable alterations in the adsorption of the selected metal ions with ZM-g-Pani. ZM-g-Pani showed eight successive regeneration cycles for Cd2+, Hg2+, and Pb2+ with more than 85% removal efficiency.","PeriodicalId":23788,"journal":{"name":"Water","volume":"2022 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common Carp (Cyprinus carpio) Reinvasion and Population Expansion in Lake Winona: A Modified Urban Floodplain Lake in Minnesota, USA 维诺纳湖中鲤鱼(Cyprinus carpio)的再入侵和种群扩张:美国明尼苏达州一个改良型城市洪泛区湖泊
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-11 DOI: 10.3390/w16182571
Neal D. Mundahl, Avery C. Schnaser, Christopher M. Kluzak, McKenzie L. Henkelman
{"title":"Common Carp (Cyprinus carpio) Reinvasion and Population Expansion in Lake Winona: A Modified Urban Floodplain Lake in Minnesota, USA","authors":"Neal D. Mundahl, Avery C. Schnaser, Christopher M. Kluzak, McKenzie L. Henkelman","doi":"10.3390/w16182571","DOIUrl":"https://doi.org/10.3390/w16182571","url":null,"abstract":"Common or European carp (Cyprinus carpio) were eliminated from Lake Winona during a 1973 lake reclamation project. Multiple efforts to prevent their return and eliminate spawning opportunities have failed. Carp have remained in the lake for the past 50 years, but more recent observations of spawning activity in the lake suggest that their numbers have increased. We used shoreline electrofishing data from Lake Winona (2005–2021), along with carp abundance and effects models, to estimate the abundance of carp in Lake Winona, and to evaluate the need for future carp management within the lake. Carp size (mean TL = 614 mm, mean weight = 3.42 kg) did not differ between eastern and western basins, but densities were three times higher in the western basin (105 compared to 34 fish/hectare), and carp had significantly higher relative weights in the western (117%) versus the eastern (107%) basin. Carp biomass estimates for the eastern (116 kg/hectare) and western (360 kg/hectare) basins suggest that the lake may soon experience significant declines in macrophyte cover and other ecological damage associated with that loss. With an estimated adult carp population of >6900 fish and a carp biomass (23,750 kg) 1.5 times greater than the biomass of all carp killed during the 1973 reclamation, carp management activities (e.g., fish removal and spawning migration barriers) should be initiated soon to protect the Lake Winona game fish community.","PeriodicalId":23788,"journal":{"name":"Water","volume":"9 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and Quantitative Characterization of Stress and Displacement of Surrounding Rock Structure due to the Multiple Layers Backfill Mining under Loose Aquifers 松散含水层下多层回填采矿引起的围岩结构应力和位移的演变及定量表征
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-11 DOI: 10.3390/w16182574
Jiawei Liu, Wanghua Sui
{"title":"Evolution and Quantitative Characterization of Stress and Displacement of Surrounding Rock Structure due to the Multiple Layers Backfill Mining under Loose Aquifers","authors":"Jiawei Liu, Wanghua Sui","doi":"10.3390/w16182574","DOIUrl":"https://doi.org/10.3390/w16182574","url":null,"abstract":"Backfill mining is an important means of ensuring the high efficiency and safety of the coal mining under thin bedrock and loose aquifers. Based on the case study of Taiping Coalmine, the theoretical analysis of entropy and numerical modeling methods are adopted to establish the visualization model of temporal–spatial cube of stress and displacement induced by the multiple layers backfill mining. Moreover, the quantitative characterization and measurement framework of symmetric KL-divergence is established based on information entropy and mutual information. The results show that: (1) The non-uniformity of stress and displacement is enhanced due to the multiple layers backfill mining, showing certain fluctuation characteristics. (2) The KL-divergence of stress to displacement is slightly greater than that of displacement to stress, and the hotspot distribution law of stress–displacement related efficiency is consistent with KL-divergence. (3) The hotspots of stress entropy and the gap between stress entropy and displacement entropy in multiple layers backfill mining decrease obviously. (4) Stress plays a main role in displacement, and displacement is a linkage response to stress due to the coordinated deformation. Multiple layers backfill mining results in an enhanced correlation degree and more chaotic state between stress and displacement. The results will provide engineering geological basis for optimal design and safe production of backfill mining under loose aquifers.","PeriodicalId":23788,"journal":{"name":"Water","volume":"12 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of an Ensemble Inflow-Prediction System for Upstream Reservoirs in Sai River, Japan 日本西河上游水库流量集合预测系统研究
IF 3.4 3区 环境科学与生态学
Water Pub Date : 2024-09-11 DOI: 10.3390/w16182577
Katsunori Tamakawa, Shigeru Nakamura, Cho Thanda Nyunt, Tomoki Ushiyama, Mohamed Rasmy, Keijiro Kubota, Asif Naseer, Eiji Ikoma, Toshihiro Nemoto, Masaru Kitsuregawa, Toshio Koike
{"title":"Investigation of an Ensemble Inflow-Prediction System for Upstream Reservoirs in Sai River, Japan","authors":"Katsunori Tamakawa, Shigeru Nakamura, Cho Thanda Nyunt, Tomoki Ushiyama, Mohamed Rasmy, Keijiro Kubota, Asif Naseer, Eiji Ikoma, Toshihiro Nemoto, Masaru Kitsuregawa, Toshio Koike","doi":"10.3390/w16182577","DOIUrl":"https://doi.org/10.3390/w16182577","url":null,"abstract":"In this study, an ensemble inflow-prediction system was developed for a hydropower-generation dam in the upper Sai River basin, and the accuracy of ensemble inflow prediction, which is important for efficient dam operation, was investigated. First, the Water and Energy Based Distributed Hydrological Model for Snow (WEB-DHM-S), a hydrological model developed for the Sai River basin, can represent the hydrological process from warm to cold seasons. Next, a system was developed on the Data Integration and Analysis System (DIAS) to predict inflows into the dam by inputting real-time meteorological data and ensemble rainfall forecast data into WEB-DHM-S. The WEB-DHM-S was calibrated and validated over a 3-year period from August 2015 to July 2018, and showed good agreement with observed inflows from base flow to peak flow and snowmelt runoff in each year. The results of inflow forecasting during frontal rainfall in August 2021 by inputting ensemble rainfall forecasts up to 39 h ahead showed that at the Inekoki Dam site, the total inflow (volume) to the peak was predicted with an accuracy of within 20% at 30 h, 24 h, 18 h, 12 h, and 6 h before the peak. These ensemble inflow forecasts can help optimize dam operations.","PeriodicalId":23788,"journal":{"name":"Water","volume":"36 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信