Zengbing Sun, Xiao Yang, Sen Liu, Jiangbo Wang, Mingbo Li
{"title":"Spatial Distribution and Health Risk Assessment of Saline Water Intrusion and Potentially Hazardous Pollutants in a Coastal Groundwater Environment","authors":"Zengbing Sun, Xiao Yang, Sen Liu, Jiangbo Wang, Mingbo Li","doi":"10.3390/w16182573","DOIUrl":"https://doi.org/10.3390/w16182573","url":null,"abstract":"In coastal plains, saline water intrusion (SWI) and potentially hazardous pollutants are harmful to local human health. The southern Laizhou Bay has become a typical representative of the northern silty coast due to its extensive silt sedimentation and the significant impact of human activities. This research focuses on a portion of the southern Laizhou Bay, using GIS-based spatial analysis, water quality index methods and health risk assessments to evaluate the impact of saltwater intrusion and potential hazardous pollutants. The results show that the groundwater in the study area is significantly impacted by saline water intrusion, leading to major ion concentrations that far exceed World Health Organization (WHO) standards. The groundwater chemical types of brine and brackish water in the study area are mainly Cl-Na, and the main chemical types of fresh water are HCO3-Ca·Na. The average concentration sequence of the main ions in groundwater is K+ > HCO3− > Cl− > Na+ > SO42− > Ca2+ > Mg2+. The average hazard quotient (HQ) sequence in typical pollutants is Cl− > F− > NO3-N > Se > Mn > NO2-N > Cu > Pb > Zn > Fe, and the carcinogenic risk (CR) sequence caused by carcinogenic heavy metals is Cd > As > Cr. The noncarcinogenic health risk area is mainly distributed in the northwest of the study area, while the potential carcinogenic risk area is in the central region. The Cl is the greatest noncarcinogenic risk to adults and children. The mean HQ values for adults and children were 95.69 and 146.98, indicating a significant noncarcinogenic risk. The mean CR values for adults and children were 0.00037 and 0.00057, suggesting a relatively low carcinogenic risk. SWI is the main influencing factor on human health; therefore, it is necessary to prevent and control SWI. Moreover, potentially hazardous pollutants are carcinogenic and noncarcinogenic risks and are caused by agriculture, industry and other human activities. The findings of this research offer scientific insights for groundwater pollution control and saline water intrusion management in similar coastal areas.","PeriodicalId":23788,"journal":{"name":"Water","volume":"63 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhang, Zhihao Zhang, Chunyang Li, Jiani Yue, Yan Su, Weiguo Cheng, Shoushan Sun, Xi Chen, Deyu Shi, Bo Liu
{"title":"Emerging Contaminants in Landfill Leachate and Groundwater: A Case Study of Hazardous Waste Landfill and Municipal Solid Waste Landfill in Northeastern China","authors":"Nan Zhang, Zhihao Zhang, Chunyang Li, Jiani Yue, Yan Su, Weiguo Cheng, Shoushan Sun, Xi Chen, Deyu Shi, Bo Liu","doi":"10.3390/w16182575","DOIUrl":"https://doi.org/10.3390/w16182575","url":null,"abstract":"Emerging contaminants (ECs) present a significant risk to both the ecological environment and human health. Landfill leachate (LL) often contains elevated EC levels, posing a potential risk to localized groundwater. This study aimed to characterize ECs in municipal solid waste landfills (MSWLs) and hazardous waste landfills (HWLs) in northeast (NE) China. One and three HWLs and MSWLs in NE China with varying types, operational years, and impermeable layers were selected as case studies, respectively. Statistical analysis of 62 indicators of nine ECs in leachate and the groundwater environment indicated the presence of perfluorinated compounds (PFCs), antibiotics, alkylphenols (APs), and bisphenol A (BPA). The leachates of the four landfills exhibited elevated concentrations of ECs of 21.03 μg/L, 40.04 μg/L, 14.54 μg/L, and 43.05 μg/L for PFCs, antibiotics, Aps, and BPA, respectively. There was a positive correlation between the highest concentrations of ECs in groundwater and those in leachate as well as with operational duration of the landfill; in contrast, groundwater EC was negatively correlated with the degree of impermeability. This study can guide future management of ECs in landfills and hazardous waste sites in China, particularly in NE China.","PeriodicalId":23788,"journal":{"name":"Water","volume":"27 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal Dynamics of Ecosystem Water Yield Services and Responses to Future Land Use Scenarios in Henan Province, China","authors":"Shuxue Wang, Tianyi Cai, Qian Wen, Chaohui Yin, Jing Han, Zhichao Zhang","doi":"10.3390/w16172544","DOIUrl":"https://doi.org/10.3390/w16172544","url":null,"abstract":"Water yield (WY) service is the cornerstone of ecosystem functionality. Predicting and assessing the impact of land use/land cover (LULC) changes on WY is imperative for a nation’s food security, regional economic development, and ecological environmental protection. This study aimed to evaluate the water yield (WY) service in Henan Province, China, using high-resolution (30 m) remote sensing land use monitoring data from four study years: 1990, 2000, 2010, and 2020. It also utilized the PLUS model to predict the characteristics of LULC evolution and the future trends of WY service under four different development scenarios (for 2030 and 2050). The study’s results indicated the following: (1) From 1990 to 2020, the Henan Province’s WY first increased and then decreased, ranging from 398.56 × 108 m3 to 482.95 × 108 m3. The southern and southeastern parts of Henan Province were high-value WY areas, while most of its other regions were deemed low-value WY areas. (2) The different land use types were ranked in terms of their WY capacity, from strongest to weakest, as follows: unused land, cultivated land, grassland, construction land, woodland, and water. (3) The four abovementioned scenarios were ranked, from highest to lowest, based on the Henan’s total WY (in 2050) in each of them: high-quality development scenario (HDS), business-as-usual scenario (BAU), cultivated land protection scenario (CPS), and ecological protection scenario (ES). This study contributes to the advancement of ecosystem services research. Its results can provide scientific support for water resource management, sustainable regional development, and comprehensive land-use planning in Henan Province.","PeriodicalId":23788,"journal":{"name":"Water","volume":"33 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyu Ma, Shasha Liu, Lin Guo, Junzheng Zhang, Chen Feng, Mengyuan Feng, Yilun Li
{"title":"Evolution and Analysis of Water Yield under the Change of Land Use and Climate Change Based on the PLUS-InVEST Model: A Case Study of the Yellow River Basin in Henan Province","authors":"Xiaoyu Ma, Shasha Liu, Lin Guo, Junzheng Zhang, Chen Feng, Mengyuan Feng, Yilun Li","doi":"10.3390/w16172551","DOIUrl":"https://doi.org/10.3390/w16172551","url":null,"abstract":"Understanding the interrelationships between land use, climate change, and regional water yield is critical for effective water resource management and ecosystem protection. However, comprehensive insights into how water yield evolves under different land use scenarios and climate change remain elusive. This study employs the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models, Patch-generating Land Use Simulation (PLUS) model, and Geodetector within a unified framework to evaluate the dynamics of land use, water yield, and their relationships with various factors (meteorological, social, economic, etc.). To forecast the land use/cover change (LUCC) pattern of the Yellow River Basin by 2030, three scenarios were considered: economic development priority (Scenario 1), ecological development priority (Scenario 2), and cropland development priority (Scenario 3). Climate change scenarios were constructed using CMIP6 data, representing low-stress (SSP119), medium-stress (SSP245), and high-stress (SSP585) conditions. The results show the following: (1) from 2000 to 2020, cropland was predominant in the Yellow River Basin, Henan Province, with significant land conversion to impervious land (construction land) and forest land; (2) water yield changes during this period were primarily influenced by meteorological factors, with land use changes having negligible impact; (3) by 2030, the water yield of Scenario 1 is highest among different land use scenarios, marginally surpassing Scenario 2 by 1.60 × 108 m3; (4) climate scenarios reveal significant disparities, with SSP126 yielding 54.95 × 108 m3 higher water yield than SSP245, driven predominantly by precipitation; (5) Geodetector analysis identifies precipitation as the most influential single factor, with significant interactions among meteorological and socio-economic factors. These findings offer valuable insights for policymakers and researchers in formulating land use and water resource management strategies.","PeriodicalId":23788,"journal":{"name":"Water","volume":"78 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huipan Li, Yuan Wang, Liying Ping, Na Li, Peng Zhao
{"title":"Comprehensive Zoning Strategies for Flood Disasters in China","authors":"Huipan Li, Yuan Wang, Liying Ping, Na Li, Peng Zhao","doi":"10.3390/w16172546","DOIUrl":"https://doi.org/10.3390/w16172546","url":null,"abstract":"The frequency of global floods has increased, posing significant threats to economic development and human safety. Existing flood risk zoning studies in disaster prevention lack integration of the natural–economic–social chain and urban resilience factors. This study addresses this gap by constructing flood disaster risk and intensity indices using data from 31 provinces and 295 prefectural-level cities in China from 2011 to 2022. These indices incorporate natural (rainfall), economic (GDP), and social (population, built-up area) indicators to assess the flood likelihood and loss degree, providing comprehensive risk and intensity ratings. The study also examines the impact of resilience factors—environmental (green space), infrastructural (rainwater pipeline density), and natural resource (watershed areas)—on flood intensity. Findings reveal that high-risk regions are mainly in the Yangtze River Basin and southern regions, while high-intensity regions are primarily in the middle and lower Yangtze River and certain northwestern cities. Increasing rainwater pipeline density mitigates flood impacts in high-risk, high-intensity areas, while expanding green spaces and pipelines are effective in high-risk, low-intensity regions. This paper proposes a comprehensive flood hazard zoning mechanism integrating natural, economic, and social factors with urban resilience, offering insights and a scientific basis for urban flood management.","PeriodicalId":23788,"journal":{"name":"Water","volume":"221 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dinh Van Duy, Nguyen Quang Duc Anh, Nguyen Trung Viet, Hitoshi Tanaka
{"title":"Interrelationship between Wall and Beach Erosion in Loc An, Vietnam: Remote Sensing and Numerical Modeling Approaches","authors":"Dinh Van Duy, Nguyen Quang Duc Anh, Nguyen Trung Viet, Hitoshi Tanaka","doi":"10.3390/w16172553","DOIUrl":"https://doi.org/10.3390/w16172553","url":null,"abstract":"Beach erosion and coastal protection are complex and interconnected phenomena that have a substantial impact on coastal environments worldwide. Among the various coastal protection measures, seawalls have been widely implemented to mitigate erosion and protect coastal assets. However, the interrelationship between beach erosion and seawalls remains a critical topic for investigation to ensure effective and sustainable coastal management strategies. Seawalls impact the shoreline, particularly through the “end effect”, where the seawall functions similarly to a groin, causing erosion on the downdrift side relative to the direction of wave approach. This study provides a detailed analysis of the interplay between beach erosion and seawall structures in Loc An, Vietnam, employing both remote sensing and numerical approaches. Sentinel-2 images were employed together with an analytical solution to observe the shoreline change at the Loc An sand spit and to determine input values for the numerical model. Based on the shoreline dynamics, a numerical scheme was employed to study the shoreline evolution after the construction of a seawall. Our findings show that the shoreline evolution can be divided into three stages: (1) The first stage corresponds to the elongation of the sand spit without interference from coastal structures. (2) The second stage shows the effect of jetties on the shoreline, as signaled by the buildup of sand updrift of the jetties. (3) The third stage shows the effectiveness of the seawall, where the shoreline reaches its equilibrium condition. The study provides a quick and simple method for estimating shoreline diffusivity (ε) in situations where measured data is scarce.","PeriodicalId":23788,"journal":{"name":"Water","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Zhang, Weiming Xu, Boliang Xu, Junpeng Zhao, Changxia Liang, Wenjing Zhang, Junjie Deng
{"title":"Application of GIS Spatial Analysis for the Assessment of Storm Surge Inundation Risks in the Guangdong–Macao–Hong Kong Great Bay Area","authors":"Juan Zhang, Weiming Xu, Boliang Xu, Junpeng Zhao, Changxia Liang, Wenjing Zhang, Junjie Deng","doi":"10.3390/w16172554","DOIUrl":"https://doi.org/10.3390/w16172554","url":null,"abstract":"This study evaluates the storm surge inundation risk in three anthropogenically infilled estuaries—Xichong, Renshan, and Kaozhouyang—located in the Guangdong–Macao–Hong Kong Great Bay Area, China. By integrating GIS spatial analysis with storm surge modeling, we conducted 204 numerical experiments to simulate storm surge inundation under varying typhoon intensities and astronomical tide conditions. Results revealed that coastal terrain plays a crucial role in influencing storm surge levels and inundation extents. Specifically, the pocket-shaped terrain in the Renshan and Kaozhouyang estuaries amplified storm surges, resulting in higher inundation levels compared to the relatively open terrain of Xichong. Furthermore, anthropogenically reclaimed land in these estuaries appear to be particularly vulnerable to storm-induced inundation. Overall, this study underscores the importance of considering coastline morphology and the anthropogenic modifications of coastal terrain in storm surge risk assessments, offering valuable insights for disaster prevention and mitigation strategies. The use of ArcGIS spatial analysis coupled with storm surge modeling, facilitated by high-resolution DEMs, provides a statistical risk assessment of inundation. However, more complex flooding dynamics models need to be developed, particularly when terrestrial bottom friction information, which is heavily modified by human activities, can be accurately incorporated.","PeriodicalId":23788,"journal":{"name":"Water","volume":"6 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zaka Ullah Khan, Afzal Ahmed, Manousos Valyrakis, Ghufran Ahmed Pasha, Rashid Farooq, Nadir Murtaza, Diyar Khan
{"title":"Effectiveness of Collars and Hooked-Collars in Mitigating Scour around Different Abutment Shapes","authors":"Zaka Ullah Khan, Afzal Ahmed, Manousos Valyrakis, Ghufran Ahmed Pasha, Rashid Farooq, Nadir Murtaza, Diyar Khan","doi":"10.3390/w16172550","DOIUrl":"https://doi.org/10.3390/w16172550","url":null,"abstract":"Abutment scour is a major cause of bridge failures worldwide, leading to disruptions, economic losses, and loss of life. The present experimental study examines countermeasures against abutment scour using hooked-collar protections on vertical-wall and wing-wall abutments (at 45° and 60°) under different flow conditions. All 60 experiments were performed under sub-critical flow conditions by investigating scour around an abutment 20 cm long, 20 cm wide, and 25 cm tall. Two distinct values of the Froude number, 0.154 and 0.179, and a sediment particle diameter (d50) of 0.88 mm were used throughout the experimental phase. The resulting equilibrium scour around the abutments was compared to those with collar and hooked-collar protections. It was determined that the maximum abutment scour depth reduction was 83.89% when hooked collars were placed on vertical wall abutments beneath the bed surface level, and for wing-wall abutments at 45° and 60°, it was 74.2% and 73.5%, respectively, at the bed surface level. Regression analysis was conducted to assess the non-dimensional scour depth (Ds/Yf) and scour reduction (RDs/Yf), with a high enough coefficient of determination (R2 values of 0.96 and 0.93, respectively), indicating high confidence in the analysis. The sensitivity analysis findings demonstrate that the width of the collar (Wc) and La are the most influencing factors affecting Ds/Yf and RDs/Yf.","PeriodicalId":23788,"journal":{"name":"Water","volume":"6 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving a 1D Hydraulic Model to Include Bridges as Internal Boundary Conditions","authors":"Gabriella Petaccia, Elisabetta Persi","doi":"10.3390/w16172555","DOIUrl":"https://doi.org/10.3390/w16172555","url":null,"abstract":"The paper describes the implementation of internal boundary conditions in the 1D ORSADEM hydraulic model to simulate the effect of a hydraulic in-line structure. The proposed model introduces a simplified representation of the bridge geometry by imposing an equivalent narrowing, computed according to the opening size and characteristics, combined with the mass and energy balance at the structure. The model is then applied to a series of experimental tests concerning the propagation of shock waves through different types of bridges, representing different flow conditions, from free surface flow to overflow. The tests are also simulated with the original 1D ORSADEM model, including the standard head losses and the cross-section narrowing due to the presence of a structure. The comparison with the experimental measurements shows that the proposed model can simulate the shock wave flow through the bridges with a higher accuracy than the standard formulation. These findings highlight the possibility of properly evaluating the backwater effect at bridges even with a simple 1D model if the physical narrowing of the cross-section is modeled.","PeriodicalId":23788,"journal":{"name":"Water","volume":"13 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Wind–Wave Coherence Function Based on Numerical Studies","authors":"Chengxun Wei, Shenghui Li, Haiying Mao","doi":"10.3390/w16172552","DOIUrl":"https://doi.org/10.3390/w16172552","url":null,"abstract":"The synchronization and intensity of fluctuating wind speeds and wave surfaces in wind–wave joint propagation processes are affected by the coherence of the marine ambient factors of fluctuating wind and random waves. This coherence further affects the precise calculations of wind–wave joint actions on marine structures. Therefore, a wind–wave joint propagation numerical flume was established based on the numerical simulation of random waves and fluctuating wind fields. A series of numerical simulations of wind–wave joint propagations were carried out. Based on the numerical results, the influences and influence laws of factors such as wind speed position height, significant wave height and wave spectrum peak frequency on the wind–wave coherence values were studied. According to the influence characteristics of these factors, a function of wind–wave coherence values for random wind–wave joint propagation was calculated. The coherence function takes frequency as the variable, while parameters include significant wave height, wind speed position height and wave spectrum peak frequency. Through a series of numerical simulation results, data fitting was used to calculate the parameter coefficients of the coherence function. The established random wind–wave coherence function can be described using the wind–wave joint fields of marine structures and the computational analyses of structural wind–wave joint actions.","PeriodicalId":23788,"journal":{"name":"Water","volume":"58 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}