Jianfeng Li, Shengsheng Han, Zekang He, Tianzheng Cao, Shanrui Han, Tianfei Li, Junjie Li, Juanhua Jia, Wenjing Qin, Ya He
{"title":"Micro-polluted water source purification of root channel wetland in Jiaxing, China.","authors":"Jianfeng Li, Shengsheng Han, Zekang He, Tianzheng Cao, Shanrui Han, Tianfei Li, Junjie Li, Juanhua Jia, Wenjing Qin, Ya He","doi":"10.1002/wer.11112","DOIUrl":"https://doi.org/10.1002/wer.11112","url":null,"abstract":"<p><p>Root channel wetlands, as a new type of nature-imitating wetland system, provide a paradigm for micro-polluted water source purification; however, there is a knowledge gap on root channel wetlands' pollution removal effects and their main influencing factors after longtime operation. This study collected the turbidity, ammonia nitrogen (NH<sub>3</sub>-N), total nitrogen (TN), total phosphorus (TP), permanganate index (COD<sub>Mn</sub>), dissolved oxygen (DO), and chemical oxygen demand (COD) at the inlet and outlet of Shijiuyang (SJY) wetland and Guanjinggang (GJG) wetland in Jiaxing City, China, from 2019 to 2021. The results showed that root channel wetlands had better water quality improvement effects. The SJY wetland had larger removal rates for DO, COD<sub>Mn</sub>, and turbidity compared with the GJG wetland. In contrast, other water quality indexes have similar removal rates at both wetlands. The influencing factor analysis showed that water purification agent, flow, pH, and water temperature have large influences on the removal rates of pollutants for both wetlands. To address high turbidity and excessive DO, which are the primary pollutants affecting the two wetlands, implementing the diversion river before the pretreatment area and incorporating ecological floating beds in the deep purification area are recommended solutions to mitigate these issues. Compared with conventional general constructed wetlands, root channel wetlands are a more cost-effective and sustainable technology. The research is conducive to improving understanding of root channel wetland purification for micro-polluted water sources and enhancing water supply security capability in the plains water network area of the Yangtze River Delta region. PRACTITIONER POINTS: Compared with conventional general constructed wetlands, root channel wetlands are more cost-effective and sustainable technology. The SJY wetland demonstrated better removal rates for DO, CODMn, and turbidity, indicating a higher purification capacity compared to GJG wetland. Flow rate and pH are the primary factors influencing the GJG wetland, while the waterpurification agent and water temperature are the main factors affecting water quality in the SJY wetland.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11112"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and spatial distribution of microplastics in Surma river, Bangladesh: Assessing water and sediment dynamics.","authors":"Saif Izlal, Fahim Mahafuz Ruhad, Tariqul Islam, Md Hafizur Rahman, Hafsa Akter Tania","doi":"10.1002/wer.11130","DOIUrl":"10.1002/wer.11130","url":null,"abstract":"<p><p>Microplastics (MPs), or tiny pieces of plastic, have become a major global environmental problem because of their ubiquitous availability and possible risks to aquatic ecosystems. Surma is one of the vital rivers in Bangladesh located in the northeast part, with higher chances of MP pollution due to different anthropogenic reasons. In this instance, we carried out the investigation on the abundance, distribution, and characteristics of MPs in the sediment and surface water of the river. Samples were collected from 15 major locations of the Surma river flowing through Sylhet municipality. MPs particles were isolated from sediments and water samples utilizing techniques like sieve analysis, wet peroxide oxidation, density separation, and filtration and then characterized using a stereomicroscope. The abundance of MPs recorded 8 to 18 items/L in water samples (mean ± SD: 12.33 ± 2.98 items/L) and 360 to 1120 items/kg in sediment samples (mean ± SD: 522.67 ± 197.84 items/kg). The prominent size, shape, and color of MPs isolated from sediments were 1-2 mm sizes (24.49%), fragments (47.71%), and black (30.65%). However, for water samples, 1-2 mm sizes (37.22%), fiber shapes (48.48%), and transparent colors (38.46%) were dominant features. Conspicuously, in both sediment and water samples, there was a higher prevalence of smaller sized particles, posing a significant threat to the ecosystem. This heightened risk stems from the increased likelihood of ingestion by microorganisms, as well as the larger surface area of these particles, which may serve as vectors for other pollutants like organic pollutants and heavy metals. A greater abundance of fibers suggests an increased presence of lightweight particles in the water and sediment. Furthermore, the transparent color of the MPs in water might be impacted by prolonged weathering in the river, while the presence of black-colored MPs in sediment points to the existence of plastic pellets originating from industrial and diverse sources. Future studies should concentrate on long-term and broad monitoring, ecological effects, and practical mitigation techniques for MPs, providing essential baseline data to guide the formulation of policies in developing nations. PRACTITIONER POINTS: 12.33 items/L in surface water and 522.67 items/kg in sediment were observed. High correlation indicates a single MP source in mainstream water, differing from sediment. Fiber shapes, black, and transparent colored MPs are dominant. Higher prevalence of smaller sized MPs, posing a significant threat to the aquatic ecosystem.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11130"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy J Hoellein, Bailey A Schwenk, Elizabeth M Kazmierczak, Fritz Petersen
{"title":"Plastic litter is a part of the carbon cycle in an urban river: Microplastic and macroplastic accumulate with organic matter in floating debris rafts.","authors":"Timothy J Hoellein, Bailey A Schwenk, Elizabeth M Kazmierczak, Fritz Petersen","doi":"10.1002/wer.11116","DOIUrl":"https://doi.org/10.1002/wer.11116","url":null,"abstract":"<p><p>Watershed models of plastic export from rivers to oceans have large uncertainties, and improvements require direct measurements of riverine macroplastic (>5 mm) and microplastic (<5 mm). Also, plastic represents allochthonous carbon inputs to rivers but is rarely measured as carbon mass. We quantified plastic and organic matter within floating debris rafts and open water in an urban river. Macroplastics only occurred in debris rafts. Microplastics had higher concentrations in debris rafts relative to open water. Across sites, organic matter was positively correlated with microplastics and macroplastics. Last, carbon in plastic was 40% of the carbon mass in coarse particulate organic matter in debris rafts. Floating plastic litter accumulates with particulate organic matter in debris rafts. Plastic is an overlooked and ecological meaningful component of carbon standing stocks in urban rivers. Results will inform improved carbon budget calculation in rivers and watershed models of plastic export. PRACTITIONER POINTS: Plastic particles floating on the surface of an urban river accumulate in debris rafts compared to open water in terms of count and mass. Abundance and composition of plastic particles in debris rafts were distinct from those in open water areas. Plastic litter as units of carbon mass was in the same order of magnitude as carbon mass in course particulate organic matter. Plastic litter moves in similar ways to naturally occurring organic particles and should be measured as a part of the riverine carbon cycle.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11116"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongju Kwon, Jongyeong Kim, Joowon Choi, Taeyang Kim, Sung Min Cha, Soonchul Kwon
{"title":"Assessment of the impacts of constructing artificial structures on the water quality and hydrological environment of a meandering river.","authors":"Yongju Kwon, Jongyeong Kim, Joowon Choi, Taeyang Kim, Sung Min Cha, Soonchul Kwon","doi":"10.1002/wer.11120","DOIUrl":"https://doi.org/10.1002/wer.11120","url":null,"abstract":"<p><p>When an artificial structure is built in a river, the river changes significantly in water quality and hydraulic properties. In this study, the effects of the weirs constructed in the middle section of a river as a four major rivers restoration project in Korea on water quality and hydrological characteristics were analyzed. For multi-dimensional data analysis, a self-organizing map was applied, and statistical techniques including analysis of variation were used. As a result of analysis, the cross-sectional area of the river increased significantly after the construction of the weir compared to before the construction of the weir, and the flow velocity decreased at a statistically significant level. In the case of water quality, nitrogen, phosphorus, and suspended solids tended to improve after weir construction, and chlorophyll-a and bacteria tended to deteriorate. Some water quality parameters such as chlorophyll-a were also affected by seasonal influences. In order to improve the water quality deteriorated by the construction of the weir, it is necessary to consider how to improve the flow velocity of the river through partial opening or operation of the weir. In addition, in order to determine the effect of sedimentation of particulate matter due to the decrease in flow rate, it is necessary to conduct investigations on sediments around weirs in the future. PRACTITIONER POINTS: Compared to before the construction of the weir, there was no significant change in the flow rate of the river after the construction of the weir. In the case of chlorophyll-a and bacteria, the water quality was deteriorated after weir construction. To improve the deteriorated water quality, it is required to consider the fundamental management of each pollutant source and the flexible operation of both weirs. For some improved water quality parameters, further research is needed to determine whether these improvements are directly attributable to the construction of a weir.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11120"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheng Jiang, Lin Qiu, Hao Wu, Fahui Nie, Yong Liu, Wenping Cao
{"title":"Treatment of domestic wastewater and extracellular polymeric substance accumulation in siphon-type composite vertical subsurface flow constructed wetland.","authors":"Cheng Jiang, Lin Qiu, Hao Wu, Fahui Nie, Yong Liu, Wenping Cao","doi":"10.1002/wer.11132","DOIUrl":"https://doi.org/10.1002/wer.11132","url":null,"abstract":"<p><p>In this study, the siphon-type composite vertical flow constructed wetland (Sc-VSsFCW) was constructed with anthracite and shale ceramsite chosen as the substrate bed materials. During the 90-day experiment, typical pollutant removal effects of wastewater and extracellular polymeric substance (EPS) accumulation were investigated. Meanwhile, X-ray diffraction and scanning electron microscopy were used to examine the phase composition and surface morphology to analyze adsorptive property. Additionally, we evaluated the impact of siphon effluent on clogging and depolymerization by measuring the EPS components' evolution within the system. The findings reveal that both the anthracite and shale ceramsite systems exhibit impressive removal efficiencies for total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), chemical oxygen demand (COD), ammonium nitrogen (NH<sub>4</sub> <sup>+</sup>-N), and nitrate nitrogen (NO<sub>3</sub> <sup>-</sup>-N). However, as the experiment progressed, TP removal rates in both systems gradually declined because of the saturation of adsorption sites on the substrate surfaces. Although the dissolved oxygen (DO) levels remained relatively stable throughout the experiment, pH exhibited distinct patterns, suggesting that the anthracite system relies primarily on chemical adsorption, whereas the shale ceramsite system predominantly utilizes physical adsorption. After an initial period of fluctuation, the permeability coefficient and porosity of the system gradually stabilized, and the protein and polysaccharide contents in both systems exhibited a downward trend. The study underscores that anthracite and shale ceramsite have good effectiveness in pollutant removal as substrate materials. Overall, the hydraulic conditions of the double repeated oxygen coupling siphon in the Sc-VSsFCW system contribute to enhanced re-oxygenation capacity and permeability coefficient during operation. The changes in EPS content indicate that the siphon effluent exerts a certain depolymerization effect on the EPS within the system, thereby mitigating the risk of biological clogging to a certain extent. PRACTITIONER POINTS: The system can still maintain good pollutant treatment effect in long-term operation. The re-oxygenation method of the system can achieve efficient and long-term re-oxygenation effect. The siphon effluent has a certain improvement effect on the permeability coefficient and porosity, but it cannot effectively inhibit the occurrence of clogging. The EPS content did not change significantly during the operation of the system, and there was a risk of biological clogging.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11132"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Macario Padilla-Jimenez, Rodrigo Moncayo-Estrada, Daniel Tapia Maruri, Dioselina Álvarez-Bernal
{"title":"Microplastic evidence assessment from water and sediment sampling in a shallow tropical lake.","authors":"Samuel Macario Padilla-Jimenez, Rodrigo Moncayo-Estrada, Daniel Tapia Maruri, Dioselina Álvarez-Bernal","doi":"10.1002/wer.11123","DOIUrl":"https://doi.org/10.1002/wer.11123","url":null,"abstract":"<p><p>Microplastics (MPs) severely threaten inland waterbodies due to the direct impact of human activities. In the present study, spatial and temporal patterns of MPs in a shallow tropical lake were assessed, describing their size, morphology, and polymer types. Water and sediment samples were collected from Lake Chapala during three seasons, and MPs were quantified with a stereomicroscope. The structure, elemental composition, and polymeric composition were determined via environmental scanning electron microscopy and Fourier transform infrared spectroscopy. The highest average concentration of microplastics in Lake Chapala was detected during the low-water period in April 2022 (2.35 items/L), exceeding the July 2022 rainy season concentration (1.8 items/L) by 0.25 items/L, and sediment concentrations were also higher in April 2022 (219 items/kg) compared to July 2022 (210 items/kg). This study highlights the significant pollution of Lake Chapala with microplastics, emphasizing the need for urgent measures to manage plastic waste and mitigate its environmental impact on aquatic ecosystems. PRACTITIONER POINTS: Microplastic contamination was evaluated in Lake Chapala. The distribution profiles of microplastics were different in each area. Heavy metals osmium, tellurium, and rhodium were found associated with the PMs. Polymers were found in this study.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11123"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimized Ginkgo leaf biochar: An efficient adsorbent for 2,4-D herbicide removal from wastewater.","authors":"Wenyu Ma, Rui Song, Yujiao Wang, Xiaoyan Cui, Yumei Yan, Zhili Liu, Xiaojun Wang, Haixiang Gao, Runhua Lua, Wenfeng Zhou","doi":"10.1002/wer.11124","DOIUrl":"https://doi.org/10.1002/wer.11124","url":null,"abstract":"<p><p>This research exploited biochar, sourced from Ginkgo leaves (GLs), to facilitate the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous environments. The results reveal that GL biochar, activated with ZnCl<sub>2</sub> at a temperature of 500°C (500-ZGBC), demonstrated the greatest specific surface area (S<sub>BET</sub>) of 536.0 m<sup>2</sup> g<sup>-1</sup> for 2,4-D adsorption. The biochar's properties, including specific surface area, morphology, structure, thermal stability, and functional groups, were analyzed. Additionally, studies of kinetic and isotherm profiles were conducted, yielding the highest recorded adsorption capacity of 281.8 mg g<sup>-1</sup>. Pore filling, hydrogen bonding, π-π interactions, surface complexation with Zn groups, and electrostatic interactions contribute significantly to the adsorption performance of 500-ZGBC for 2,4-D. Optimal adsorption was determined to occur at pH 2.117, with a dose of 0.4230 g L<sup>-1</sup> of 500-ZGBC, and an initial concentration of 2,4-D at 294.7 mg L<sup>-1</sup>, as evidenced by the application of the response surface method (RSM). PRACTITIONER POINTS: Premium pharmaceutical-grade biochar, derived from Ginkgo leaves, boasting a S<sub>BET</sub> of 536.0 m<sup>2</sup> g<sup>-1</sup> was produced. An absorption capacity reaching 281.8 mg g<sup>-1</sup> was observed in Ginkgo leaf biochar for 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption. The adsorption procedure was refined through the employment of response surface methodology.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11124"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehrdad Ghahghaei, Alex Tawanda Kuvarega, Seyed Saeid Hosseini
{"title":"Tailoring the characteristics of polyacrylonitrile nanofiltration membranes for nickel removal from wastewater: The influence of binary solvents and pore-forming agents.","authors":"Mehrdad Ghahghaei, Alex Tawanda Kuvarega, Seyed Saeid Hosseini","doi":"10.1002/wer.11126","DOIUrl":"https://doi.org/10.1002/wer.11126","url":null,"abstract":"<p><p>This work presents the results of an investigation on the physiochemical and structural characteristics of polyacrylonitrile (PAN) nanofiltration (NF) membranes prepared using a novel concept of binary solvents for nickel (Ni) removal from wastewater streams. The thermodynamic and kinetic aspects are emphasized aiming to optimize dope formulation, membrane performance, and durability. The fabricated membranes were characterized by scanning electron microscopy (SEM), porosimetry, tensile stress/strain, and flux and rejection. Results revealed that the use of an equal (1:1) mixture of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as dope solvents led to the formation of membranes with enhanced performance, offering pure water flux of 2.33 L·m<sup>-2</sup>·h<sup>-1</sup>·bar<sup>-1</sup> and Ni rejection of 90.84%. Moreover, the incorporation of 0.5 wt.% PEG as a pore-forming agent to the dope solution further boosted pure water flux to 4.97 L·m<sup>-2</sup>·h<sup>-1</sup>·bar<sup>-1</sup> with negligible impact on Ni rejection. Besides attractive performance, the adopted strategy offered membranes of exceptionally high flexibility with no sign of defect or failure especially during module fabrication and testing enabling smooth and hassle-free scale-up and extension to other applications. PRACTITIONER POINTS: Optimized solvent mixture: A 1:1 blend of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as solvents resulted in enhanced membrane performance. High flux and Ni rejection: The fabricated membranes exhibited a pure water flux of 2.33 L·m<sup>-2</sup>·h<sup>-1</sup>·bar<sup>-1</sup> and a remarkable Ni rejection of 90.84%. PEG enhancement: Incorporating 0.5 wt.% PEG as a pore-forming agent further improved the membrane's pure water flux to 4.97 L·m<sup>-2</sup>·h<sup>-1</sup>·bar<sup>-1</sup>, without compromising Ni rejection. Exceptional flexibility: The adopted strategy yielded membranes with exceptional flexibility, making them suitable for scale-ups and other applications.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11126"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Treatment of pulp and paper mill effluent through combined aerobic and anaerobic suspended fixed-bed bioreactor.","authors":"Apourv Pant, Anuj Kumar Dwivedi, Surajit Murasingh, Deepak Singh, Muskan Mayank, Chandra Shekhar Prasad Ojha","doi":"10.1002/wer.11133","DOIUrl":"https://doi.org/10.1002/wer.11133","url":null,"abstract":"<p><p>This study explored using ultrafiltration (UF) membranes to treat pulp and paper mill wastewater, implementing a novel Taguchi experimental design to optimize operating conditions for pollutant removal and minimal membrane fouling. Researchers examined four factors: pH, temperature, transmembrane pressure, and volume reduction factor (VRF), each at three levels. Optimal conditions (pH 10, 25°C, 6 bar, VRF 3) led to a 35% reduction in flux due to fouling and high pollutant rejections: total hardness (83%), sulfate (97%), spectral absorption coefficient (SAC254) (95%), and chemical oxygen demand (COD) (89%). Conductivity had a lower rejection rate of 50%. Advanced imaging techniques like atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed reduced membrane fouling under these conditions. The Taguchi method effectively identified optimal conditions, significantly improving wastewater treatment efficiency and promoting environmental sustainability in the pulp and paper industry. PRACTITIONER POINTS: This study optimized UF membrane conditions for pulp and paper mill wastewater, reducing fouling and enhancing pollutant removal, offering practical strategies for industrial treatment. AFM and SEM provided key insights into membrane fouling and mitigation, promoting real-time diagnosis and optimization for enhanced treatment efficiency. Prioritizing anaerobic fixed-bed systems in wastewater treatment is beneficial for achieving high COD removal efficiency. Optimizing hydraulic retention time (HRT) in these systems can further improve their overall effectiveness and sustainability.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11133"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haodong Wei, Yuling Xie, Changfeng Zhou, Yang Tao, Jingqin Zhou, Cuiyun Liu
{"title":"Analysis and calculation of scour critical velocity of suspended particles in a storm sewer.","authors":"Haodong Wei, Yuling Xie, Changfeng Zhou, Yang Tao, Jingqin Zhou, Cuiyun Liu","doi":"10.1002/wer.11135","DOIUrl":"https://doi.org/10.1002/wer.11135","url":null,"abstract":"<p><p>The suspended particles in storm sewer can be easily washed away and migrated. However, few studies analyzed the scouring state of suspended particles in pipelines, and also, there was a lack of quantitative calculation. This study simulated the scouring process of suspended particles in a storm sewer with different pipe materials, and mathematical models were built for the scour critical velocity. The results showed that with the increase of particle size, density and the roughness of the pipe wall, the scour resistance of suspended particles increased, and the scouring rate decreased; therefore, the corresponding scour critical velocity increased. In accordance with the scouring rates of quartz sand and zeolite at different flow velocities in the storm sewer, the scouring state of the suspended particles could be divided into three types: no scouring, minor scouring, and massive scouring. The scour critical velocity ranges of quartz sand and zeolite with two densities in four kinds of pipes were determined, and mathematical models for the scour critical velocity of suspended particles were established. After verification, the difference rate between the calculated values and measured values was in the range of -10.56% to 6.63%, and the two values had good consistency. PRACTITIONER POINTS: Scour resistance of suspended particles increases with particle size or density. The smaller the roughness of the pipe wall, the higher the scouring rate. Higher flow velocity leads to a higher scouring rate. As scouring rate rises, no scouring, minor or massive scouring occur in sequence. Difference between the calculated and measured values is from -10.56% to 6.63%.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11135"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}