Water Environment Research最新文献

筛选
英文 中文
Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review. 对不同生物处理系统去除药物效率的见解:综述。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-11-01 DOI: 10.1002/wer.11153
Armin Dolatimehr, Ali Mahyar, Saeid Panahi Hassan Barough, Mohammadreza Mahmoodi
{"title":"Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.","authors":"Armin Dolatimehr, Ali Mahyar, Saeid Panahi Hassan Barough, Mohammadreza Mahmoodi","doi":"10.1002/wer.11153","DOIUrl":"10.1002/wer.11153","url":null,"abstract":"<p><p>This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol. This resource provides a depth and scope of information that was previously lacking in this area of study. Notably, among these pharmaceuticals, azithromycin demonstrated the highest removal rates across all examined treatment systems, with the exception of WWTPs, while carbamazepine consistently exhibited the lowest removal efficiencies across various systems. The analysis showcases the diverse results in removal efficiency impacted by factors such as system configuration, operation specifics, and environmental circumstances. The findings emphasize the critical need for continued innovation and research, specifically recommending the integration of advanced oxidation processes (AOPs) with existing biological treatment methods to improve the breakdown of recalcitrant compounds like carbamazepine. PRACTITIONER POINTS: Persistent pharmaceuticals harm aquatic ecosystems and human health. Biological systems show varying pharmaceutical removal efficiencies. Enhancing HRT and SRT improves removal but adds complexity and costs. Tailored treatment approaches needed based on contaminants and conditions.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11153"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Desalination of Nakhon Ratchasima groundwater in Thailand by membrane capacitive deionization. 利用膜电容去离子法对泰国那空拉差西马的地下水进行脱盐。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-11-01 DOI: 10.1002/wer.11152
Kunchaya Thungsuai, Eknarin Thanayupong, Nuttaporn Pimpha, Saowaluk Chaleawlert-Umpon
{"title":"Desalination of Nakhon Ratchasima groundwater in Thailand by membrane capacitive deionization.","authors":"Kunchaya Thungsuai, Eknarin Thanayupong, Nuttaporn Pimpha, Saowaluk Chaleawlert-Umpon","doi":"10.1002/wer.11152","DOIUrl":"https://doi.org/10.1002/wer.11152","url":null,"abstract":"<p><p>A single-pass mode of membrane capacitive deionization (MCDI) stack unit was fabricated for alternative desalination in local brackish groundwater. Nakhon Ratchasima (Korat), Thailand, is in the northeastern region and mostly faced the salinity groundwater problem. A commercial coconut shell-based activated carbon (PAC) was used for electrode material due to an available and cost-effective choice. Comparing two different specific surface areas of PAC (1153 and 2145 m<sup>2</sup> g<sup>-1</sup>) for the electrode material was studied regarding a basic electrosorption capacity. It revealed that the more hydrophilic surface of PAC and lower internal resistance, the higher electrosorption performance was observed, regardless of the specific surface area in the case of a similar pore structure. The MCDI stack unit with a large active area (16 × 16 cm<sup>2</sup>) of 80 pairs of electrodes (a large lab-scale unit) demonstrated a sufficient removal efficiency in single-pass mode to reduce salinity and hardness in Korat groundwater, composed of multi-coexisting ions (TDS ~ 2000 mg L<sup>-1</sup>). A relative selectivity coefficient (RSC) demonstrated that highly charged cations with smaller hydrated ionic radii predominantly played a crucial role in removal efficiency. While the initial concentration was strongly affected by the same charged ions. Total removal efficiency (RE<sub>total</sub>) and ion removal efficiency (RE<sub>ion</sub>) revealed performance stability during 20 days of operation and produced purified water with acceptable standards for consumption. Finally, this finding demonstrated the possibility of applying the PAC1-MCDI stack unit for natural groundwater desalination with a satisfactory desalination performance. We hope that the data in this study can be beneficial guidance for further practical MCDI system improvement and setup in a local area of Thailand, dealing with the salinity groundwater problem. PRACTITIONER POINTS: Desalination of brackish groundwater by membrane capacitive deionization (MCDI). Hydrophilic surface of activated carbon materials predominantly influenced a higher electrosorption performance. Relative selectivity coefficient mainly relied on ionic charges and hydrated ionic radii. Using MCDI for local brackish groundwater desalination applications produced water safe for consumption.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11152"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of priority watershed for water environment management. 为水环境管理选择优先流域。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-11-01 DOI: 10.1002/wer.11151
Jiyeon Choi, Young Mee Lee, Tae-Woo Kang, Don-Woo Ha, Seong-Yun Hwang, Youngjea Lee, Won-Seok Lee
{"title":"Selection of priority watershed for water environment management.","authors":"Jiyeon Choi, Young Mee Lee, Tae-Woo Kang, Don-Woo Ha, Seong-Yun Hwang, Youngjea Lee, Won-Seok Lee","doi":"10.1002/wer.11151","DOIUrl":"https://doi.org/10.1002/wer.11151","url":null,"abstract":"<p><p>As part of the National Water Management Basic Plan, this study conducted research to identify priority management watersheds in the Yeongsan River basin to respond to changes in water environmental conditions and improve water quality. Analysis of water quality over the past decade revealed that points located in the middle and lower of the Yeongsan River exceeded the target water quality standards. As based on the results, pollution sources and loads indicated that the W-1 watershed, classified as urban areas, exhibited high levels in residential, industrial, and urban landuse characteristics, whereas the W-6 watershed, classified as rural areas, showed high levels in livestock farming, aquaculture, and agricultural landuse (wet and dry filed) categories. To understand the impact of point source (PS) and non-point source (NPS) pollution within the watershed, load duration curve (LDC) analysis was conducted, indicating that downstream segments of all flow ranges exceeded the target water quality standards, necessitating management of both PS and NPS. Multivariate log-linear analysis also confirmed the influence of PS and NPS, suggesting that watershed management should concurrently address both types of pollution. Based on the results, priority management watershed rankings were derived through the calculation of standard and integrated indicators, with the analysis indicating the following order: W-1 > W-6 > W-3 > W-4 > W-2 > W-5 > W-7 > W-8. PRACTITIONER POINTS: Priority management watersheds that urgently need water environment management can be identified. The priority management watershed rankings were derived through the calculation of integrated indicators data on BOD, TP concentration, and loads. Serve as a guide for future diagnostic assessments of pollution sources and the development of effective management strategies. Anticipated to significantly contribute to the establishment of robust water quality management practices in the basin.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11151"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. 通过热解和热氧化控制生物固体中的全氟辛烷磺酸。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-11-01 DOI: 10.1002/wer.11149
Lloyd J Winchell, Joshua Cullen, John J Ross, Alex Seidel, Mary Lou Romero, Farokh Kakar, Embrey Bronstad, Martha J M Wells, Naomi B Klinghoffer, Franco Berruti, Alexandre Miot, Katherine Y Bell
{"title":"Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control.","authors":"Lloyd J Winchell, Joshua Cullen, John J Ross, Alex Seidel, Mary Lou Romero, Farokh Kakar, Embrey Bronstad, Martha J M Wells, Naomi B Klinghoffer, Franco Berruti, Alexandre Miot, Katherine Y Bell","doi":"10.1002/wer.11149","DOIUrl":"10.1002/wer.11149","url":null,"abstract":"<p><p>Pyrolysis has been identified as a possible thermal treatment process for reducing perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater solids, though off-gas from the pyrolysis unit can still be a source of PFAS emissions. In this work, the fate of PFAS through a laboratory-scale pyrolysis unit coupled with a thermal oxidizer for treatment of off-gasses is documented. Between 91.5% and >99.9% reduction was observed through the entire system for specific compounds based on targeted analyses. Overall, the pyrolysis and thermal oxidizer system removed 99.4% of the PFAS moles introduced. Furthermore, shorter chain variants comprised the majority of reportable PFAS in the thermal oxidizer flue gas, indicating the longer chain compounds present in the dried biosolids fed to pyrolyzer decompose through the system. PRACTITIONER POINTS: Thermal oxidation is a promising treatment technology for exhaust systems associated with thermal biosolids treatments. Thermal oxidation demonstrated significant degradation capabilities, with gas phase emissions comprising only 0.200% of initial PFAS concentrations to the system. Short-chain PFAS made up a higher percent of thermal oxidizer emissions, ranging between 54.4% and 79.5% of PFAS in the exhaust on a molar basis. The possibility of recombinant PFAS formation and partial thermal decomposition of PFAS in thermal oxidation is a needed area of research.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11149"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlormequat inhibits Vallisneria natans growth and shapes the epiphytic biofilm microbial community. 矮壮素能抑制 Vallisneria natans 的生长并形成附生生物膜微生物群落。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11148
Zihang Ma, Dan Ai, Zuhan Ge, Tao Wu, Jibiao Zhang
{"title":"Chlormequat inhibits Vallisneria natans growth and shapes the epiphytic biofilm microbial community.","authors":"Zihang Ma, Dan Ai, Zuhan Ge, Tao Wu, Jibiao Zhang","doi":"10.1002/wer.11148","DOIUrl":"https://doi.org/10.1002/wer.11148","url":null,"abstract":"<p><p>Submerged macrophytes can overgrow and negatively affect freshwater ecosystems. This study aimed to investigate the use of chlormequat (CQ) to regulate submerged Vallisneria natans growth as well as its impact on the microbial community of epiphytic biofilms. V. natans height under CQ dosages of 20, 100, and 200 mg/L decreased within 21 days by 12.57%, 30.07%, and 44.62%, respectively, while chlorophyll content increased by 1.94%, 20.39%, and 38.83%. At 100 mg/L, CQ reduced the diversity of bacteria in the biofilm attached to V. natans leaves but increased the diversity of the eukaryotic microbial community. CQ strongly inhibited Cyanobacteria; compared with the control group, the treatment group experienced a significant reduction from 36.54% to 2.61%. Treatment significantly inhibited Gastrotricha and Rotifera, two dominant phyla of eukaryotes in the leaf biofilm, reducing their relative abundances by 17.41% and 6.48%, respectively. CQ significantly changed the leaf biofilm microbial community correlation network. The treatment group exhibited lower modularity (2.012) compared with the control group (2.249); however, the central network of the treated group contained a higher number of microbial genera (13) than the control group (4), highlighting the significance of eukaryotic genera in the network. The results obtained from this study provide invaluable scientific context and technical understanding pertinent to the restoration of submerged macrophytes within aquatic ecosystems. PRACTITIONER POINTS: Chlormequat reduced the plant height but increased leaf chlorophyll content. Chlormequat reduced biofilm bacterial diversity but increased eukaryotic diversity. Chlormequat affected the bacterial-fungal association networks in biofilms.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11148"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. 用废咖啡粉生物炭和钢渣沸石合成新型复合材料,以增强染料和磷酸盐的去除效果。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11137
Shazia Noorin, Tanushree Paul, Arnab Ghosh, Jurng-Jae Yee, Sung Hyuk Park
{"title":"Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal.","authors":"Shazia Noorin, Tanushree Paul, Arnab Ghosh, Jurng-Jae Yee, Sung Hyuk Park","doi":"10.1002/wer.11137","DOIUrl":"https://doi.org/10.1002/wer.11137","url":null,"abstract":"<p><p>Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L<sup>-1</sup> suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11137"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence. 用可解释人工智能理解污水处理厂污泥的机器学习预测。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11136
Fuad Bin Nasir, Jin Li
{"title":"Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence.","authors":"Fuad Bin Nasir, Jin Li","doi":"10.1002/wer.11136","DOIUrl":"https://doi.org/10.1002/wer.11136","url":null,"abstract":"<p><p>This study investigates the use of machine learning (ML) models for wastewater treatment plant (WWTP) sludge predictions and explainable artificial intelligence (XAI) techniques for understanding the impact of variables behind the prediction. Three ML models, random forest (RF), gradient boosting machine (GBM), and gradient boosting tree (GBT), were evaluated for their performance using statistical indicators. Input variable combinations were selected through different feature selection (FS) methods. XAI techniques were employed to enhance the interpretability and transparency of ML models. The results suggest that prediction accuracy depends on the choice of model and the number of variables. XAI techniques were found to be effective in interpreting the decisions made by each ML model. This study provides an example of using ML models in sludge production prediction and interpreting models applying XAI to understand the factors influencing it. Understandable interpretation of ML model prediction can facilitate targeted interventions for process optimization and improve the efficiency and sustainability of wastewater treatment processes. PRACTITIONER POINTS: Explainable artificial intelligence can play a crucial role in promoting trust between machine learning models and their real-world applications. Widely practiced machine learning models were used to predict sludge production of a United States wastewater treatment plant. Feature selection methods can reduce the required number of input variables without compromising model accuracy. Explainable artificial intelligence techniques can explain driving variables behind machine learning prediction.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11136"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of organic matter constituents on phosphorus recovery from CPR sludges. 有机物成分对 CPR 污泥中磷回收的影响。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11141
Aseel A Alnimer, D Scott Smith, Wayne J Parker
{"title":"Impact of organic matter constituents on phosphorus recovery from CPR sludges.","authors":"Aseel A Alnimer, D Scott Smith, Wayne J Parker","doi":"10.1002/wer.11141","DOIUrl":"https://doi.org/10.1002/wer.11141","url":null,"abstract":"<p><p>This study evaluated the influence of organic matter (OM) constituents on the potential for recovery of P from wastewaters when FeCl<sub>3</sub> treatment is employed for P removal. The presence of OM constituents did not influence P release from Fe-P sludges when alkaline and ascorbic acid treatments were employed. However, the overall recovery of P from wastewater was impacted by the presence of selected OM constituents through the reduction of P uptake during coagulation. The presence of protein and humic matter showed remarkably low P removal values (3.0 ± 0.4% and 23 ± 1% respectively) when compared to an inorganic control recipe (62 ± 2%). Elevated soluble Fe (SFe) residuals in the presence of proteins (87 ± 5%) and humics (51 ± 1%) indicated interactions between Fe(III) cations and negatively charged functional groups like hydroxyl, carboxyl, and phenolic groups available in these organics. Significant negative correlations between P removal and residual SFe were observed suggesting Fe solubilization by OM constituents was the mechanism responsible for reduced P removal. The findings of this study identify, for the first time, the impact of OM constituents on overall P recovery when Fe(III) salts are employed and provide insights into recoveries that can be expected when Fe is added to primary, secondary treated, and industrial wastewaters. PRACTITIONER POINTS: Low P removal values were observed for protein and humic dominated wastewater recipes. Iron(III) solubilization counted for P removal reduction by proteins and humic acids. There is no effect of OM on P release from Fe-P sludge at pH 10 and ascorbic acid treatments. OM and agent employed to release P from sludges affected overall recovery of P.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11141"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions. 北欧条件下室外微藻多元养殖的季节性脱氮。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11142
Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff
{"title":"Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions.","authors":"Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff","doi":"10.1002/wer.11142","DOIUrl":"https://doi.org/10.1002/wer.11142","url":null,"abstract":"<p><p>Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO<sub>2</sub> effluent. Total N (TN) removal was higher in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g<sup>-2</sup>d<sup>-1</sup>). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11142"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Co-Ce@RM catalysts for catalytic ozonation of tetracycline. 制备用于催化臭氧氧化四环素的 Co-Ce@RM 催化剂。
IF 2.5 4区 环境科学与生态学
Water Environment Research Pub Date : 2024-10-01 DOI: 10.1002/wer.11146
Wenquan Sun, Yiming Xie, Ming Zhang, Jun Zhou, Yongjun Sun
{"title":"Preparation of Co-Ce@RM catalysts for catalytic ozonation of tetracycline.","authors":"Wenquan Sun, Yiming Xie, Ming Zhang, Jun Zhou, Yongjun Sun","doi":"10.1002/wer.11146","DOIUrl":"https://doi.org/10.1002/wer.11146","url":null,"abstract":"<p><p>In this work, a Co-Ce@RM ozone catalyst was developed using red mud (RM), a by-product of alumina production, as a support material, and its preparation process, catalytic efficiency, and tetracycline (TCN) degradation mechanism were investigated. A comprehensive assessment was carried out using the 3E (environmental, economic, and energy) model. The optimal production conditions for Co-Ce@RM were as follows: The doping ratio of Co and Ce was 1:3, the calcination temperature was 400°C, and the calcination time was 5 h, achieving a maximum removal rate of 87.91% of TCN. The catalyst was characterized using different analytical techniques. Under the conditions of 0.4 L/min ozone aeration rate, with 9% catalyst loading and solution pH 9, the optimal removal rates and chemical oxygen demand by the Co-Ce catalytic ozonation at RM were 94.17% and 75.27%, respectively. Moreover, free radical quenching experiments showed that superoxide radicals (O<sub>2</sub> <sup>-</sup>) and singlet oxygen (1O<sub>2</sub>) were the main active groups responsible for the degradation of TCN. When characterizing the water quality, it was assumed that TCN undergoes degradation pathways such as demethylation, dehydroxylation, double bond cleavage, and ring-opening reactions under the influence of various active substances. Finally, the 3E evaluation model was deployed to evaluate the Co-Ce@RM catalytic ozonation experiment of TCN wastewater. PRACTITIONER POINTS: The preparation of Co-Ce@RM provides new ideas for resource utilization of red mud. Catalytic ozonation by Co-Ce@RM can produce <sub>1</sub>O<sup>2</sup> active oxygen groups. The Co-Ce@RM catalyst can maintain a high catalytic activity after 20 cycles. The degradation pathway of the catalytic ozonation of tetracycline was fully analyzed. Catalytic ozone oxidation processes were evaluated by the \"3E\" (environmental, economic, and energy) model.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11146"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信