{"title":"Hydrochemical processes and inorganic nitrogen sources of shallow groundwater in the Sanjiang Plain, northeast China.","authors":"Tingwen Wu, Zhihong Li, Huqun Cui, Weipo Liu, Jiangtao Liu, Xuxue Cheng, Mingzhu Liu","doi":"10.1002/wer.11121","DOIUrl":"https://doi.org/10.1002/wer.11121","url":null,"abstract":"<p><p>This study investigates the chemical characteristics, formation, and sources of inorganic nitrogen (IN) of shallow groundwater across the Sanjiang Plain, aiming to enhance drinking water safety management and pollution control. A total of 167 groundwater and 27 surface water samples were collected for constituents and isotopes (H<sup>2</sup> and O<sup>18</sup>). The hydrogeochemical characteristics showed that the major type is HCO<sub>3</sub>- Ca·Mg, with low total dissolved solids and a neutral to weak alkaline nature. Rock weathering processes govern the hydrochemical composition of groundwater. Hydrogen and oxygen stable isotopes analyses revealed that precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO<sub>3</sub>-N concentrations, with sewage, manure, and fertilizers being the primary IN sources. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes, causing the loss of NO<sub>3</sub>-N and leaving NH<sub>4</sub>-N as the dominant IN form. Organic matter mineralization is likely a more significant contributor to NH<sub>4</sub>-N concentrations than ammonium fertilizers. These findings provide valuable information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions. PRACTITIONER POINTS: Rock weathering processes govern the hydrochemical composition of groundwater, and precipitation serves as the main water source. In alluvial areas, oxidative conditions lead to the enrichment of NO<sub>3</sub>-N. In lacustrine areas, intensive rice cultivation results in reductive conditions and strong denitrification processes. Organic matter mineralization is likely a more significant contributor to NH<sub>4</sub>-N concentrations than ammonium fertilizers. These findings provide references for water management and information for further research on natural sources and groundwater pollution in areas with similar hydrogeological conditions.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11121"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Sun, Xiuyan Wang, Shuaiwei Wang, Weichao Sun, Jingjing Wang, He Di
{"title":"Experimental study on soil deformation caused by overexploitation of groundwater.","authors":"Lin Sun, Xiuyan Wang, Shuaiwei Wang, Weichao Sun, Jingjing Wang, He Di","doi":"10.1002/wer.11111","DOIUrl":"https://doi.org/10.1002/wer.11111","url":null,"abstract":"<p><p>Due to the overexploitation of deep groundwater, the largest cone of depression in the world has formed in the North China Plain. This led to severe geological hazards, including land subsidence and ground fissures, and also caused economic losses. The prevention and treatment of subsidence needs to rely on the accurate prediction of subsidence amount. According to the one-dimensional consolidation theory and effective stress principle, combined with stratum structure, groundwater flow, stress distribution, and so forth, the high-pressure consolidation test results of 569.6 m deep borehole soil samples are adopted; with a specific focus on stress and deformation parameters under exploitation of groundwater condition, the soil-water coupling prediction model of groundwater level lowering depth and land subsidence has been established. Verification with measured subsidence data near the study sites demonstrated that the predicted curve is consistent with the measured one and the differences between them are acceptable. The model can be applied in different areas after making adjustment based on different regional stratigraphic structures. Its key advantage lies in the ability to provide land subsidence prediction for areas lacking monitoring data, making it highly valuable for widespread application. PRACTITIONER POINTS: There is a compressible stratum structure; it is the internal factors of land subsidence. The groundwater level decline causes the soil body stress to change. It is land subsidence of the external factors. Based on the one-dimensional consolidation theory and by combining stratigraphic structures, groundwater flow, and stress distribution, a ground settlement prediction model was established.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11111"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward a better understanding of polymeric aluminum-modified attapulgite for the efficient removal of low phosphorus concentration.","authors":"Xiaoben Yang, Junming Chen, Xuewen Wu, Guocheng Zhu","doi":"10.1002/wer.11122","DOIUrl":"https://doi.org/10.1002/wer.11122","url":null,"abstract":"<p><p>Attapulgite (ATP) is a biocompatible clay mineral that efficiently absorbs water. It is widely used in water treatment due to its environmental friendliness and cost-effectiveness. This study aimed to develop a volume-expansion structure-based attapulgite flocculant (VES-ATP) using aluminum salt and attapulgite (ATP) under alkaline conditions, specifically for the treatment of water containing low levels of phosphorus. The VES-ATP was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The removal of phosphorus by the VES-ATP was conducted by varying the mass ratio of Al to attapulgite (denoted as R<sub>mAl/mATP</sub>), ATP dosage, and pH. The results showed that the VES-ATP had a good expansion and dispersibility in the presence of alkalized aluminum species. The basicity as the molar ratio of OH to Al (0.8 or 1.6) determined the expansion feasibility, and the coverage degree of Al onto ATP, as indicated by the mass ratio of Al to attapulgite (denoted as R<sub>mAl/mATP</sub>), determined Al flocculation efficiency. Higher values such as R<sub>mAl/mATP</sub> = 4:1 and 2:1 may result in a better flocculation. Low phosphorus treatment was successfully achieved through Al flocculation and ATP adsorption, including complexation, hydrogen bonding, and electrostatic attraction. As expected, the VES-ATP generated larger size flocs with a bigger fractal dimension than that with the sole Al flocculation. As a result, the total phosphorus could be reduced to the level below 5 μg/L. It is more efficient in the pH range of 5-9. Overall, the coupling of aluminum and attapulgite has significantly enhanced both purification capabilities of phosphorus. PRACTITIONER POINTS: Polymeric aluminum-modified attapulgite was efficient for removal of low phosphorus concentration. Phosphorus concentrations can be reduced to below 5 μg/L. Polymeric aluminum and attapulgite are both safe, and this technology is suitable for water treatment.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11122"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gravity-driven packed bed filter, with copper-impregnated activated carbon, for continuous water disinfection in absence of electricity.","authors":"Mohana Mukherjee, Shankar Ramachandran, Rajdip Bandyopadhyaya","doi":"10.1002/wer.11114","DOIUrl":"https://doi.org/10.1002/wer.11114","url":null,"abstract":"<p><p>Availability of safe drinking water is a major concern in many parts of the world. While many filtration units operating on various principles are available to combat this, most require electricity, which may not be consistently available in such areas. In the present study, we have designed and demonstrated a water disinfection system that can operate purely on gravity, without any electricity. For this, a potassium hydroxide modified copper-impregnated activated carbon (KOH-Cu-AC) hybrid was used as a filter medium for disinfection, because it is less expensive, with performance comparable to previously reported hybrids containing silver. To maintain a constant water flow rate under gravity, during disinfection, a Mariotte bottle was used as the reservoir of the contaminated water. Using this and a constant head between the bottle and the treated water exit point, the required water-filter contact time of 25 min (for decontamination) is maintained in the filter column, regardless of tank-fill level. The demonstrated lab-scale system can perform disinfection of simulated contaminated water (with an initial concentration of 10<sup>4</sup> CFU mL<sup>-1</sup> Escherichia coli), for at least 6 h, with a flow rate of 150 mL h<sup>-1</sup>. The disinfection performance from the gravity-based filter was further validated with the conventional pump-driven filter, used for continuous disinfection of drinking water. Equivalence of results between pump- and gravity-driven operations helps us to eliminate the need for power, without any compromise in disinfection efficacy. Finally, copper concentration from treated water (106 ppb at steady state) remains very well within the safe limit (1000 ppb as per USEPA guideline). Hence, the lab-scale design of gravity-based packed bed filter will be useful for domestic and community-based supply of safe drinking water in resource-constrained areas, because it eliminated electricity requirement of conventional power-driven systems. PRACTITIONER POINTS: Cost-effective KOH-Cu-AC hybrid is developed as a disinfection material. Mariotte bottle used for maintaining constant disinfected water flow rate works without any electrical power supply. This system can be used for getting on-spot, continuous disinfected water supply. The concentration of copper in the treated water is well within the safety limit. It can be applicable in rural and remote areas (no electric power source) as well as natural calamity-affected areas.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11114"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitigating thermal stratification in lakes/reservoirs through wind-powered air diffusers.","authors":"Oğuz Hazar, Sebnem Elçi","doi":"10.1002/wer.11127","DOIUrl":"https://doi.org/10.1002/wer.11127","url":null,"abstract":"<p><p>Thermal stratification can cause various water quality issues in large water bodies. To address this, a new wind-powered artificial mixing system is designed and experimentally tested for various Savonius rotor combinations (three-stage and four-stage rotors). These turbines directly utilize wind energy to draw air into the water column for aeration, bypassing the need for electrical conversion. The rotor performances were tested in terms of power and torque coefficients. Additionally, these rotors were tested for artificial mixing efficiencies in a specially designed water tank that can mimic thermal stratification typically observed in an actual water supply reservoir. Among the rotors, the three-stage rotor with a 60° phase shift was found to exhibit superior power and torque coefficients, achieving a power efficiency value of 0.14. As for the mixing efficiency, the four-stage rotor with a 45° phase shift excelled in mixing efficiency, reaching 95%. PRACTITIONER POINTS: A new wind-powered artificial mixing system is designed and tested for various Savonius rotor combinations. While keeping the total rotor height constant, the three-stage Savonius rotor class shows superior performance against the four-stage Savonius rotor class in terms of power and torque efficiency. Apart from the rotor performance results, the four-stage Savonius rotors show greater artificial mixing efficiency than the three-stage Savonius rotors. Single-pump/diffuser artificial destratification system exhibits better mixing efficiency than multiple-pump/diffuser systems.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11127"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Abid Azad Sakib, Osman Miah, Nahin Mostofa Niloy, Md Morshedul Haque, Mashura Shammi, Shafi Mohammad Tareq
{"title":"Tracing fluorescent dissolved organic matter (fDOM) characteristics and water quality parameters: Insights from an urban industrial river to marine zone.","authors":"Md Abid Azad Sakib, Osman Miah, Nahin Mostofa Niloy, Md Morshedul Haque, Mashura Shammi, Shafi Mohammad Tareq","doi":"10.1002/wer.11125","DOIUrl":"https://doi.org/10.1002/wer.11125","url":null,"abstract":"<p><p>This study aims to identify continuous water quality changes and identify fluorescence properties from urban rivers to marine zones. Various types of natural and anthropogenic sources derived dissolved organic matter (DOM) have been identified in this study. These include soil-derived DOM, plant remnants, and soluble particles produced when organic material partially decomposes and is released by microorganisms, such as bacteria, algae, and plants. DOM was characterized using a three-dimensional excitation-emission matrix (3DEEM), parallel factor analysis (PARAFAC), and water quality parameters from the Buriganga River, Dhaka to Patenga Seaport, Chittagong, along with the Shitalakshya River, a small portion of the Padma River, and the Meghna River. To better understand the data analysis, the study area was divided into three central regions: urban industrial rivers, industrial estuarine rivers, and marine zones. In the urban industrial river, 3DEEM and PARAFAC identified five fluorophores (peaks: A, C, M, T, and T<sub>uv</sub>) with five components: detergent-like, fulvic-like, tryptophan or protein-like, fulvic-like (C-type), and protein-like, which might originate from the industrial activities and sewage pollution. In the industrial estuarine river zone, three fluorophores have been identified (peaks: A, C, T<sub>uv</sub>) with two known components, namely, fulvic acid (A-type) and fulvic acid (C-type), with an unknown photoproduct at Ex/Em = 295/368 (peak T<sub>uv</sub>). Components in the industrial river zone may originate from terrestrial sources, indicating vegetation along the river. In the marine zone, four fluorophores have been identified (peaks: T<sub>uv</sub>, A, T, C) with two components, that is, protein- or tryptophan-like and humic acid-like from coral origin. The intensities of both fulvic-like and protein-like substances were high in urban industrial river water owing to industrial activity and sewage pollution. SUVA<sub>254</sub> suggests high aromaticity in all three regions, whereas the optical properties suggest that terrestrial and microbial components are present in the urban industrial and estuarine rivers. This further indicates that urban industrial river water quality is highly polluted. The lowest degradation potential index (DPI) in the marine zone might result from the presence of the highest number of dissolved solids in the water, and the highest DPI of industrial estuarine rivers explains the comparatively high presence of terrestrial-derived humic (A)- and humic (C)-like components in the ratio to the unknown photoproduct of mid-wavelength. PRACTITIONER POINTS: This study's uniqueness is a 220-km cruise from an urban river to a coastal seaport to analyze fluorescence properties. The study found that most water parameters were within the DoE standards, except for DO, which was consistently low. 3DEEM-PARAFAC identified five fluorophores linked to detergent, fulvic, and protein-like substances from sewage ","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11125"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quynh Thi Nhu Bui, Taehee Kim, Han-Sol Kim, Seokmin Lee, Seungjun Lee, Jang-Seu Ki
{"title":"Sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus and environmental implications.","authors":"Quynh Thi Nhu Bui, Taehee Kim, Han-Sol Kim, Seokmin Lee, Seungjun Lee, Jang-Seu Ki","doi":"10.1002/wer.11128","DOIUrl":"https://doi.org/10.1002/wer.11128","url":null,"abstract":"<p><p>Microalgae are unicellular, photosynthetic organisms in aquatic environments and are sensitive to water quality and contaminants. While green algae and diatoms are widely used for toxicity assessments, there is a relatively limited amount of toxicity data available for freshwater dinoflagellates. Here, we evaluated the sub-lethal effects of the metals Cu, Cr, Ni, and Zn and the herbicides atrazine and S-metolachlor on the freshwater dinoflagellate Palatinus apiculatus. Based on the 72-h median effective concentration (EC<sub>50</sub>), P. apiculatus showed sensitive responses to metals in the order of Cu (0.052 mg L<sup>-1</sup>), Cr (0.085 mg L<sup>-1</sup>), Zn (0.098 mg L<sup>-1</sup>), and Ni (0.13 mg L<sup>-1</sup>). Among the tested herbicides, P. apiculatus was more sensitive to atrazine (0.0048 mg L<sup>-1</sup>) than S-metolachlor (0.062 mg L<sup>-1</sup>). In addition, we observed morphological alterations and significant increases in reactive oxygen species (ROS) production in cells exposed to 0.05 mg L<sup>-1</sup> of Cu and 0.005 mg L<sup>-1</sup> of atrazine. These indicated that metals and pesticides induced oxidative stress in cellular metabolic processes and consequently caused severe physiological damage to the cells. Our results provide baseline data on the toxic effects of typical environmental contaminants on freshwater dinoflagellate, suggesting that P. apiculatus could be used as a bioindicator in freshwater toxicity assessments. PRACTITIONER POINTS: The sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus were evaluated. Palatinus sensitively responded to metals and pesticides; of test chemicals, atrazine (0.0048 mg L<sup>-1</sup> of EC50) was the most sensitive. Metals and pesticides induced oxidative stress and consequently caused severe physiological damage to the Palatinus cells. The freshwater dinoflagellate Palatinus can be used as a bioindicator in freshwater toxicity assessments.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11128"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential effects of polystyrene microplastics on the adsorption of cadmium and ciprofloxacin by tea leaf litter-derived magnetic biochar: Influencing factors and mechanisms.","authors":"Xiaoming Gong, Ranran Chen, Guanwei Shi, Haibo Sun, Yang Yang, Yunshan Liang, Pufeng Qin, Huilin Yang, Zhibin Wu","doi":"10.1002/wer.11117","DOIUrl":"https://doi.org/10.1002/wer.11117","url":null,"abstract":"<p><p>Water pollution involves the coexistence of microplastics (MPs) and traditional pollutants, and how can MPs influence the adsorption of other pollutants by biochar during the treatment process remains unclear. This study aimed to investigate the influence of polystyrene microplastics (PS MPs) on the adsorption of cadmium (Cd) and ciprofloxacin (CIP) by magnetic biochar (MTBC) in the single and binary systems. MTBC was prepared using tea leaf litter; the effects of time, pH, and salt ions on the adsorption behaviors were investigated; and X-ray photoelectronic spectroscopy (XPS) and density flooding theory analysis were conducted to elucidate the influence mechanisms. Results indicated that PS MPs reduced the pollutants adsorption by MTBC due to the heterogeneous aggregation between PS MPs and MTBC and the surface charge change of MTBC induced by PS MPs. The effects of PS MPs on heavy metals and antibiotics adsorption were distinctly different. PS MPs reduced Cd adsorption on MTBC, which were significantly influenced by the solution pH and salt ions contents, suggesting the participation of electrostatic interaction and ion exchange in the adsorption, whereas the effects of PS MPs on CIP adsorption were inconspicuous. In the hybrid system, PS MPs reduced pollutants adsorption by MTBC with 66.3% decrease for Cd and 12.8% decrease for CIP, and the more remarkable reduction for Cd was due to the predominated physical adsorption, and CIP adsorption was mainly a stable chemisorption. The influence of PS MPs could be resulted from the interaction between PS MPs and MTBC with changing the functional groups and electrostatic potential of MTBC. This study demonstrated that when using biochar to decontaminate wastewater, it is imperative to consider the antagonistic action of MPs, especially for heavy metal removal. PRACTITIONER POINTS: Magnetic biochar (MTBC) was prepared successfully using tea leaf litter. MTBC could be used for cadmium (Cd) and ciprofloxacin (CIP) removal. Polystyrene microplastics (Ps MPs) reduced Cd/CIP adsorption by MTBC. Ps MPs effects on Cd adsorption were more obvious than that of CIP. Ps MPs changed the functional groups and electrostatic potential of MTBC, thus influencing MTBC adsorption.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11117"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biohydrogen generation from distillery effluent using baffled up-flow microbial electrolysis cell.","authors":"Jayachitra Murugaiyan, Anantharaman Narayanan, Samsudeen Naina Mohamed","doi":"10.1002/wer.11119","DOIUrl":"https://doi.org/10.1002/wer.11119","url":null,"abstract":"<p><p>Microbial electrolysis cell (MEC) is gaining importance not only for effectively treating wastewater but also for producing hydrogen. The up-flow microbial electrolysis cell (UPMEC) is an innovative approach to enhance the efficiency, and substrate degradation. In this study, a baffled UPMEC with an anode divided into three regions by inserting the baffle (sieve) plates at varying distances from the cathode was designed. The effect of process parameters, such as flow rate (10, 15, and 20 mL/min), electrode area (50, 100, and 150 cm<sup>2</sup>), and catholyte buffer concentration (50, 100, and 150 mM) were investigated using distillery wastewater as substrate. The experimental results showed a maximum of 0.6837 ± 0.02 mmol/L biohydrogen at 150 mM buffer, with 49 ± 1.0% COD reduction using an electrode of area 150 cm<sup>2</sup>. The maximum current density was 1335.94 mA/m<sup>2</sup> for the flow rate of 15 mL/min and surface area of 150 cm<sup>2</sup>. The results showed that at optimized flow rate and buffer concentration, maximum hydrogen production and effective treatment of wastewater were achieved in the baffled UPMEC. PRACTITIONER POINTS: Biohydrogen production from distillery wastewater was investigated in a baffled UPMEC. Flowrate, concentration and electrode areas significantly influenced the hydrogen production. Maximum hydrogen (0.6837±0.02mmol/L.day) production and COD reduction (49±1.0%) was achieved at 15 mL/min. Highest CHR of 95.37±1.9 % and OHR of 4.6±0.09 % was observed at 150 mM buffer concentration.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11119"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic analysis of groundwater chemistry from 1997 to 2018 in the eastern part of Yongning County, Ningxia Hui Autonomous Region of northwestern China: Integration of Bayesian water quality assessment and health risk assessment.","authors":"Yahong Zhou, Yingqiu Xia, Jingkai Zhou, Yuhan Dai, Yuetao Ma, Tiebing Xu, Zhuo Liu","doi":"10.1002/wer.11134","DOIUrl":"https://doi.org/10.1002/wer.11134","url":null,"abstract":"<p><p>Groundwater is an important part of water resources, with many characteristics: widespreading, steady changing, good water quality, and usable. Therefore, it is an ideal drinking water source. However, with the rapidly economic development and the accelerated urbanization process, the problem of groundwater pollution has become increasingly serious. In this study, the eastern part of Yongning County was taken as the study area, 30 groundwater samples from 1997 to 1998, 2007 to 2008, and 2017 to 2018 were selected for water quality assessment and health risk assessment. The results showed that the groundwater chemical type had a tendency to change from HCO<sub>3</sub>-Ca·Mg type to SO<sub>4</sub>·Cl-Ca·Mg type, and the rock weathering was the important factor controlling the groundwater hydrochemistry in the eastern part of Yongning County. The water quality evaluation of Mn and As was grade II, and the water quality evaluation of Cu, Zn, Cr<sup>6+</sup>, Cd, and Mo was grade I. Both carcinogenic and non-carcinogenic risks were higher in children than in adults, the acceptable frequency of adults was higher than that of children, and the area with higher risks was distributed in the central and easternmost regions of Yongning County. As was a more sensitive factor to carcinogenic risk than Cr<sup>6+</sup>. Therefore, we should pay more attention to the governance of As and the health of children's drinking water. Special attention also should be paid to the water environment protection in the eastern parts of Yongning County. Water quality assessment and health risk assessment in the study area lay a foundation for water pollution control and water environmental protection in the future. PRACTITIONER POINTS: The hydrochemical type changes from HCO<sub>3</sub>-Ca·Mg type to SO<sub>4</sub>·Cl-Ca·Mg type, which is mainly affected by rock weathering. According to the Bayesian water quality assessment: Mn and As was II, and Cr belongs to I is small. As was the main carcinogenic factor, Mn was the main non-carcinogenic factor, and the risk was higher in children than adults.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11134"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}