Beibei Zhang, Xin Hu, Bo Li, Pan Wu, Xutao Cai, Ye Luo, Xiangzhao Deng, Mingming Jiang
{"title":"A Groundwater Quality Assessment Model for Water Quality Index: Combining Principal Component Analysis, Entropy Weight Method, and Coefficient of Variation Method for Dimensionality Reduction and Weight Optimization, and Its Application.","authors":"Beibei Zhang, Xin Hu, Bo Li, Pan Wu, Xutao Cai, Ye Luo, Xiangzhao Deng, Mingming Jiang","doi":"10.1002/wer.11155","DOIUrl":"https://doi.org/10.1002/wer.11155","url":null,"abstract":"<p><p>Groundwater underpins water supply for most of the world's regions, yet its sustainable utilization has been markedly compromised by inappropriate exploitation and a multitude of pollution sources. Water quality evaluation has emerged as an essential strategy to guarantee the optimized utilization and vigilant conservation of water resources. In this study, principal component analysis (PCA), entropy weight method (EWM), coefficient of variation method (CVM), and Water Quality Index (WQI) were used to construct an integrated WQI groundwater quality assessment model that integrates PCA-CVM-EWM for dimensionality reduction and weight optimization. Taking a village in Shandong Province, China, as an example, PCA identified seven evaluation indicators. The CVM-EWM were coupled to calculate comprehensive weights through the principle of minimum information entropy, followed by a comprehensive assessment of groundwater quality based on WQI values. The results indicated that Class III groundwater predominated in the study area, accounting for 74%, with localized pollution present. The hydrochemical type of the groundwater was primarily SO<sub>4</sub>·HCO<sub>3</sub>-Ca, significantly influenced by human activities. The coefficients of variation for Fe, Mn, and NH<sub>4</sub>-N all exceeded 1. Compared to other methods, the optimized WQI model demonstrated superior performance in the selection of evaluative indicators, weight distribution, and comprehensive water quality assessment, showing a distinct advantage for water quality data with numerous hydrochemical indicators and substantial coefficients of variation. The findings provided a scientific reference for diagnosing groundwater quality issues and formulating preventive and control measures. PRACTITIONER POINTS: A comprehensive water quality index evaluation model was constructed. Optimized steps for selecting indicators and assigning weights for the water quality index model. Selection of evaluation indicators based on indicator correlation analysis. The variability of hydrochemical data is considered.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 12","pages":"e11155"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang, Yong Xiao, Liwei Wang, Yuqing Zhang, Mei Feng, Wenxiang Zhu, Wenchun Yang, Wenchao Shi, Hongjie Yang, Jibin Han, Wenxu Hu, Ning Wang
{"title":"Deciphering pollution sources and mechanisms controlling groundwater chemistry in a typical dense agricultural plain on Yungui Plateau.","authors":"Jie Wang, Yong Xiao, Liwei Wang, Yuqing Zhang, Mei Feng, Wenxiang Zhu, Wenchun Yang, Wenchao Shi, Hongjie Yang, Jibin Han, Wenxu Hu, Ning Wang","doi":"10.1002/wer.11156","DOIUrl":"https://doi.org/10.1002/wer.11156","url":null,"abstract":"<p><p>Groundwater is a critical resource for economic growth and livelihoods in the dense agricultural plains of plateaus. However, contaminations from various sources pose significant threats to groundwater quality. Understanding the sources of groundwater contamination and the mechanisms of hydrochemical control is essential for the sustainable development of agriculturally intensive plains. This research utilizes 23 datasets of groundwater chemical measurements to apply hierarchical clustering analysis, positive matrix factorization, and hydrochemical analysis techniques. Through these methods, the study identifies the sources of groundwater contamination and deciphers the hydrochemical control mechanisms within a representative intensive agricultural plain region of Yungui Plateau. The finds indicate that groundwater in the plain primarily derives from the rainfall occurred in the surrounding mountains. During the long underground flow process, groundwater undergoes water-rock interactions and ion exchanges with various lithological strata, resulting in the formation of distinct hydrochemical types. As it traverses regions influenced by human activities, groundwater encounters varying levels and types of contamination. Consequently, there is a notable variation in groundwater quality across different areas of the plain. Groundwater is dominated by the hydrochemical faces of HCO<sub>3</sub>-Ca type in the southern part of the plain. Groundwater in the piedmont region of this part exhibits the highest quality, acting as the baseline for the overall groundwater quality of the plain. Groundwater in agricultural areas of this part is severely polluted by nitrate-rich agricultural wastewater. In the central urban area, under the control of municipal wastewater discharge and denitrification, groundwater is to some extent polluted by NH<sub>4</sub> <sup>+</sup>. In the northern sector of the plain, groundwater chemistry exhibits greater diversity due to variations in geological strata and exposure to a range of pollution sources. The majority of the regions are contaminated with SO<sub>4</sub> <sup>2-</sup> and Cl<sup>-</sup> and present a predominance of Cl-Na type for groundwater hydrochemical facies. Groundwater at the northernmost end is polluted by NO<sub>2</sub> <sup>-</sup>, NH<sub>4</sub> <sup>+</sup>, and P. In addition, there is also a small amount of groundwater near the lake that is heavily polluted by fertilizers. This study provides valuable insights for the development of sound groundwater management strategies, applicable not only to the current agricultural plain but also to analogous regions worldwide. PRACTITIONER POINTS: This study probed the impact of agricultural pollution on the groundwater hydrochemistry in a cultivated plain. The research pinpointed the origins and contributions of groundwater chemicals in the cultivated agricultural plain. A conceptual model was established to illustrate groundwater chemistry formation in an","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 12","pages":"e11156"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolong Cao, Qingyu Li, Min Yang, Dilibaer Ruzibake, Jianlei Chen, Shuya Hu
{"title":"Effects of iodine content on the hydrochemical characteristics and microbial community structure of groundwater in coastal zone: A case study of Bailang River Basin.","authors":"Xiaolong Cao, Qingyu Li, Min Yang, Dilibaer Ruzibake, Jianlei Chen, Shuya Hu","doi":"10.1002/wer.11154","DOIUrl":"https://doi.org/10.1002/wer.11154","url":null,"abstract":"<p><p>Iodine is an important component of the thyroid gland, producing hormones. Excess iodine can trigger autoimmune thyroid disease. The salt-freshwater interaction zone of the coastal aquifer is affected by seawater intrusion, and the physical and chemical environment is constantly changing. Exploring the characteristics and influencing factors of high-iodine groundwater in coastal areas play an important role in the prevention and control of groundwater pollution. In this study, the hydrochemical characteristics of high-iodine groundwater were analyzed. The interrelationship between the water's chemical components was revealed, and the microbial community composition under different iodine concentration gradients in the groundwater was examined using 16sRNA high-throughput sequencing. The influence of water quality on microbial distribution was also explored. The results showed that the iodine content in the Bailang River Basin ranged from 31 to 1776 μg/L, and the high-iodine groundwater samples accounted for 67.7%, with uneven spatial distribution. Groundwater samples with different iodine concentrations were grouped and compared, and there was no significant difference in the diversity and richness of microbial communities. At the genus level, iodine concentrations were significantly correlated with Sediminibacterium and Thauera. In addition to iodine, nitrates and sulfates also have a significant effect on microbial communities. PRACTITIONER POINTS: Groundwater in the south bank of Laizhou Bay is predominantly alkaline, with uneven spatial distribution of iodine content. As the concentration of iodide increases, the groundwater chemical type tends towards Na-Cl type. The concentration of iodine has little effect on the richness and diversity of microbial communities. The concentrations of sulfate, nitrate, and nitrite also affect the microbial structure and species diversity of groundwater.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 12","pages":"e11154"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhua Wang, Wenchao Feng, Jian Lu, Jun Wu, Wenxin Cao, Jianbai Zhang, Cui Zhang, Bing Hu, Wensheng Li
{"title":"Removal of Fe<sup>2+</sup> in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling.","authors":"Jianhua Wang, Wenchao Feng, Jian Lu, Jun Wu, Wenxin Cao, Jianbai Zhang, Cui Zhang, Bing Hu, Wensheng Li","doi":"10.1002/wer.11147","DOIUrl":"10.1002/wer.11147","url":null,"abstract":"<p><p>Excessive Fe<sup>2+</sup> in coastal aquaculture source water will seriously affect the aquaculture development. This study used manganese sand to investigate the removal potential and mechanism of Fe<sup>2+</sup> in coastal aquaculture source water by column experiments. The pseudo-first-order kinetic model could better describe Fe<sup>2+</sup> removal process with R<sup>2</sup> in the range of 0.9451-0.9911. More than 99.7% of Fe<sup>2+</sup> could be removed within 120 min while the removal rate (k) was positively affected by low initial concentration of Fe<sup>2+</sup>, high temperature, and low pH. Logistic growth (S-shaped growth) model could better fit the concentration variation of Fe<sup>2+</sup> in the effluent of the column (R<sup>2</sup>>0.99). The Fe<sup>2</sup> breakthrough curve could be fitted by Bohart-Adams, Yoon-Nelson, and Thomas models (R<sup>2</sup>>0.95). Smooth slices with irregular shapes existed on the surface of manganese sand after the reaction while Fe content increased significantly on the surface of manganese sand after the column experiment. Moreover, FeO (OH) was mainly formed on the surface of manganese sand after the reaction. PRACTITIONER POINTS: Fe<sup>2+</sup> in coastal aquaculture source water could be removed by manganese ores. The pseudo-first-order kinetic model better described the Fe<sup>2+</sup> removal process. FeO (OH) was mainly formed on the surface of manganese sand after the reaction.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11147"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brock Hodgson, Kenneth Brischke, Branden Cavanaugh, Manel Garrido-Baserba, Elinor S Austin, Diego Rosso
{"title":"Using off-gas testing to map mixing gradients and audit blower capacity.","authors":"Brock Hodgson, Kenneth Brischke, Branden Cavanaugh, Manel Garrido-Baserba, Elinor S Austin, Diego Rosso","doi":"10.1002/wer.11143","DOIUrl":"https://doi.org/10.1002/wer.11143","url":null,"abstract":"<p><p>A water resource recovery facility sited in a region at a high elevation has experienced the effects of over-designing its blowers. In this case study, we used off-gas analysis and site-specific power tariffs to quantify actual process loading and air requirements, and we quantitatively evaluated various options for blower replacement or upgrade. Off-gas analysis mapped the oxygen uptake rate at the surface of the tank, suggesting that the tanks were not evenly loaded across their sections. The local cost of energy directly affects the return on the investment calculation and limits the available solutions. The payback of partial or complete blower replacement may not be justified even in the event of excessive aeration, and the sequencing of aeration system improvements including diffuser replacement, process controls, and blower modifications should be evaluated contemporaneously. PRACTITIONER POINTS: Off-gas analysis can be used to evaluate process loading imbalances by mapping the oxygen uptake rate. Alpha factors from off-gas testing are used in process models to evaluate air requirements and blower air demand. Comparative evaluation of blowers must be done considering the net present value of the status quo, upgrades, or replacement.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11143"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wudneh A Shewa, Lin Sun, Kevin Bossy, Martha Dagnew
{"title":"Biofilm characterization and dynamic simulation of advanced rope media reactor for the treatment of primary effluent.","authors":"Wudneh A Shewa, Lin Sun, Kevin Bossy, Martha Dagnew","doi":"10.1002/wer.11150","DOIUrl":"10.1002/wer.11150","url":null,"abstract":"<p><p>Biofilm modeling is inherently complex, often requiring multiple assumptions and simplifications. In biofilm modeling, default or literature-based values in biofilm systems are usually used to estimate biofilm parameters, including boundary layer, biofilm density, thickness, attachment, and detachment rates. This study aimed to characterize and model the biofilm of a specific rope-type fixed media system, removing carbon and total inorganic nitrogen, coupled with sensitivity analysis. Among the five model parameters, the sensitivity analysis of this study showed that boundary layer thickness is the most influential parameter for predicting effluent ammonia and nitrate concentrations, and biofilm density is most sensitive with respect to effluent chemical oxygen demand (COD). The least sensitive parameter is the detachment rate. Based on the calculated mean absolute error (MAE) and root mean squared error (RMSE), the calibrated BioCord fixed-film reactor (BFFR) model accurately predicted effluent ammonium and dissolved oxygen (DO) in the continuously aerated bench-scale reactor (R1) and failed to predict well in the intermittently aerated bench-scale reactor (R2). RMSE values calculated for NH<sub>3</sub>-N and DO in R1 are 0.95 and 0.53 mg/L, respectively. In the BioCord pilot plant's case, ammonium-N predicted by the model fit the measured values well, while it overpredicted DO concentrations. PRACTITIONER POINTS: Fixed biofilm BioCord reactors were studied for primary effluent treatment. A methodology was developed to characterize biofilms. Boundary layer thickness is the most influential parameter for predicting effluent ammonia and nitrate concentrations. Biofilm density is the most sensitive parameter with respect to effluent COD. The calibrated BFFR model can predict effluent ammonium, nitrite, and nitrate-nitrogen.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11150"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Armin Dolatimehr, Ali Mahyar, Saeid Panahi Hassan Barough, Mohammadreza Mahmoodi
{"title":"Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.","authors":"Armin Dolatimehr, Ali Mahyar, Saeid Panahi Hassan Barough, Mohammadreza Mahmoodi","doi":"10.1002/wer.11153","DOIUrl":"10.1002/wer.11153","url":null,"abstract":"<p><p>This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol. This resource provides a depth and scope of information that was previously lacking in this area of study. Notably, among these pharmaceuticals, azithromycin demonstrated the highest removal rates across all examined treatment systems, with the exception of WWTPs, while carbamazepine consistently exhibited the lowest removal efficiencies across various systems. The analysis showcases the diverse results in removal efficiency impacted by factors such as system configuration, operation specifics, and environmental circumstances. The findings emphasize the critical need for continued innovation and research, specifically recommending the integration of advanced oxidation processes (AOPs) with existing biological treatment methods to improve the breakdown of recalcitrant compounds like carbamazepine. PRACTITIONER POINTS: Persistent pharmaceuticals harm aquatic ecosystems and human health. Biological systems show varying pharmaceutical removal efficiencies. Enhancing HRT and SRT improves removal but adds complexity and costs. Tailored treatment approaches needed based on contaminants and conditions.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11153"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Desalination of Nakhon Ratchasima groundwater in Thailand by membrane capacitive deionization.","authors":"Kunchaya Thungsuai, Eknarin Thanayupong, Nuttaporn Pimpha, Saowaluk Chaleawlert-Umpon","doi":"10.1002/wer.11152","DOIUrl":"https://doi.org/10.1002/wer.11152","url":null,"abstract":"<p><p>A single-pass mode of membrane capacitive deionization (MCDI) stack unit was fabricated for alternative desalination in local brackish groundwater. Nakhon Ratchasima (Korat), Thailand, is in the northeastern region and mostly faced the salinity groundwater problem. A commercial coconut shell-based activated carbon (PAC) was used for electrode material due to an available and cost-effective choice. Comparing two different specific surface areas of PAC (1153 and 2145 m<sup>2</sup> g<sup>-1</sup>) for the electrode material was studied regarding a basic electrosorption capacity. It revealed that the more hydrophilic surface of PAC and lower internal resistance, the higher electrosorption performance was observed, regardless of the specific surface area in the case of a similar pore structure. The MCDI stack unit with a large active area (16 × 16 cm<sup>2</sup>) of 80 pairs of electrodes (a large lab-scale unit) demonstrated a sufficient removal efficiency in single-pass mode to reduce salinity and hardness in Korat groundwater, composed of multi-coexisting ions (TDS ~ 2000 mg L<sup>-1</sup>). A relative selectivity coefficient (RSC) demonstrated that highly charged cations with smaller hydrated ionic radii predominantly played a crucial role in removal efficiency. While the initial concentration was strongly affected by the same charged ions. Total removal efficiency (RE<sub>total</sub>) and ion removal efficiency (RE<sub>ion</sub>) revealed performance stability during 20 days of operation and produced purified water with acceptable standards for consumption. Finally, this finding demonstrated the possibility of applying the PAC1-MCDI stack unit for natural groundwater desalination with a satisfactory desalination performance. We hope that the data in this study can be beneficial guidance for further practical MCDI system improvement and setup in a local area of Thailand, dealing with the salinity groundwater problem. PRACTITIONER POINTS: Desalination of brackish groundwater by membrane capacitive deionization (MCDI). Hydrophilic surface of activated carbon materials predominantly influenced a higher electrosorption performance. Relative selectivity coefficient mainly relied on ionic charges and hydrated ionic radii. Using MCDI for local brackish groundwater desalination applications produced water safe for consumption.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11152"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyeon Choi, Young Mee Lee, Tae-Woo Kang, Don-Woo Ha, Seong-Yun Hwang, Youngjea Lee, Won-Seok Lee
{"title":"Selection of priority watershed for water environment management.","authors":"Jiyeon Choi, Young Mee Lee, Tae-Woo Kang, Don-Woo Ha, Seong-Yun Hwang, Youngjea Lee, Won-Seok Lee","doi":"10.1002/wer.11151","DOIUrl":"https://doi.org/10.1002/wer.11151","url":null,"abstract":"<p><p>As part of the National Water Management Basic Plan, this study conducted research to identify priority management watersheds in the Yeongsan River basin to respond to changes in water environmental conditions and improve water quality. Analysis of water quality over the past decade revealed that points located in the middle and lower of the Yeongsan River exceeded the target water quality standards. As based on the results, pollution sources and loads indicated that the W-1 watershed, classified as urban areas, exhibited high levels in residential, industrial, and urban landuse characteristics, whereas the W-6 watershed, classified as rural areas, showed high levels in livestock farming, aquaculture, and agricultural landuse (wet and dry filed) categories. To understand the impact of point source (PS) and non-point source (NPS) pollution within the watershed, load duration curve (LDC) analysis was conducted, indicating that downstream segments of all flow ranges exceeded the target water quality standards, necessitating management of both PS and NPS. Multivariate log-linear analysis also confirmed the influence of PS and NPS, suggesting that watershed management should concurrently address both types of pollution. Based on the results, priority management watershed rankings were derived through the calculation of standard and integrated indicators, with the analysis indicating the following order: W-1 > W-6 > W-3 > W-4 > W-2 > W-5 > W-7 > W-8. PRACTITIONER POINTS: Priority management watersheds that urgently need water environment management can be identified. The priority management watershed rankings were derived through the calculation of integrated indicators data on BOD, TP concentration, and loads. Serve as a guide for future diagnostic assessments of pollution sources and the development of effective management strategies. Anticipated to significantly contribute to the establishment of robust water quality management practices in the basin.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11151"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lloyd J Winchell, Joshua Cullen, John J Ross, Alex Seidel, Mary Lou Romero, Farokh Kakar, Embrey Bronstad, Martha J M Wells, Naomi B Klinghoffer, Franco Berruti, Alexandre Miot, Katherine Y Bell
{"title":"Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control.","authors":"Lloyd J Winchell, Joshua Cullen, John J Ross, Alex Seidel, Mary Lou Romero, Farokh Kakar, Embrey Bronstad, Martha J M Wells, Naomi B Klinghoffer, Franco Berruti, Alexandre Miot, Katherine Y Bell","doi":"10.1002/wer.11149","DOIUrl":"10.1002/wer.11149","url":null,"abstract":"<p><p>Pyrolysis has been identified as a possible thermal treatment process for reducing perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater solids, though off-gas from the pyrolysis unit can still be a source of PFAS emissions. In this work, the fate of PFAS through a laboratory-scale pyrolysis unit coupled with a thermal oxidizer for treatment of off-gasses is documented. Between 91.5% and >99.9% reduction was observed through the entire system for specific compounds based on targeted analyses. Overall, the pyrolysis and thermal oxidizer system removed 99.4% of the PFAS moles introduced. Furthermore, shorter chain variants comprised the majority of reportable PFAS in the thermal oxidizer flue gas, indicating the longer chain compounds present in the dried biosolids fed to pyrolyzer decompose through the system. PRACTITIONER POINTS: Thermal oxidation is a promising treatment technology for exhaust systems associated with thermal biosolids treatments. Thermal oxidation demonstrated significant degradation capabilities, with gas phase emissions comprising only 0.200% of initial PFAS concentrations to the system. Short-chain PFAS made up a higher percent of thermal oxidizer emissions, ranging between 54.4% and 79.5% of PFAS in the exhaust on a molar basis. The possibility of recombinant PFAS formation and partial thermal decomposition of PFAS in thermal oxidation is a needed area of research.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 11","pages":"e11149"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}