Geordee Spilkia, Scott Kyser, Adrian T Hanson, Kelsey Hogan, Nathan W Johnson
{"title":"水资源回收设施通过控制废水悬浮固体达到低水平汞限制。","authors":"Geordee Spilkia, Scott Kyser, Adrian T Hanson, Kelsey Hogan, Nathan W Johnson","doi":"10.1002/wer.70158","DOIUrl":null,"url":null,"abstract":"<p><p>Hundreds of water resource recovery facilities (WRRFs) in North America have received low-level mercury effluent limits (< 2 ng/L). Although mercury binding to dissolved organic matter (DOM) and particulate matter in natural environments is well understood, guidance about low-level mercury removal at WRRFs is lacking. We collected samples of filter-passing and particulate mercury at 16 WRRFs with a variety of secondary and tertiary particle-control technologies. Particulate mercury in WRRF effluent was covariate with total suspended solids (TSS) at concentrations ranging from < 0.2 to 15 ng/L. Filter-passing (< 0.45 μm) mercury in WRRF effluent was mostly bound to DOM and was typically between 0.3 and 0.8 ng/L. Thermodynamic modeling and sulfur quantities in wastewater TSS and DOM point to a consistent quantity of filter-passing Hg that cannot be removed by typical wastewater technologies and necessitates effective particulate removal to meet low-level mercury limits.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 8","pages":"e70158"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328045/pdf/","citationCount":"0","resultStr":"{\"title\":\"Water Resource Recovery Facilities Meet Low-Level Mercury Limits by Controlling Effluent Suspended Solids.\",\"authors\":\"Geordee Spilkia, Scott Kyser, Adrian T Hanson, Kelsey Hogan, Nathan W Johnson\",\"doi\":\"10.1002/wer.70158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hundreds of water resource recovery facilities (WRRFs) in North America have received low-level mercury effluent limits (< 2 ng/L). Although mercury binding to dissolved organic matter (DOM) and particulate matter in natural environments is well understood, guidance about low-level mercury removal at WRRFs is lacking. We collected samples of filter-passing and particulate mercury at 16 WRRFs with a variety of secondary and tertiary particle-control technologies. Particulate mercury in WRRF effluent was covariate with total suspended solids (TSS) at concentrations ranging from < 0.2 to 15 ng/L. Filter-passing (< 0.45 μm) mercury in WRRF effluent was mostly bound to DOM and was typically between 0.3 and 0.8 ng/L. Thermodynamic modeling and sulfur quantities in wastewater TSS and DOM point to a consistent quantity of filter-passing Hg that cannot be removed by typical wastewater technologies and necessitates effective particulate removal to meet low-level mercury limits.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"97 8\",\"pages\":\"e70158\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.70158\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70158","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Water Resource Recovery Facilities Meet Low-Level Mercury Limits by Controlling Effluent Suspended Solids.
Hundreds of water resource recovery facilities (WRRFs) in North America have received low-level mercury effluent limits (< 2 ng/L). Although mercury binding to dissolved organic matter (DOM) and particulate matter in natural environments is well understood, guidance about low-level mercury removal at WRRFs is lacking. We collected samples of filter-passing and particulate mercury at 16 WRRFs with a variety of secondary and tertiary particle-control technologies. Particulate mercury in WRRF effluent was covariate with total suspended solids (TSS) at concentrations ranging from < 0.2 to 15 ng/L. Filter-passing (< 0.45 μm) mercury in WRRF effluent was mostly bound to DOM and was typically between 0.3 and 0.8 ng/L. Thermodynamic modeling and sulfur quantities in wastewater TSS and DOM point to a consistent quantity of filter-passing Hg that cannot be removed by typical wastewater technologies and necessitates effective particulate removal to meet low-level mercury limits.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.