Weiliang Cao, Hongwei Song, Manlin Li, Zhongyi Yang
{"title":"同时污泥脱水和磷回收的低成本磁性LDHs:一种可扩展的城市污水厂方法。","authors":"Weiliang Cao, Hongwei Song, Manlin Li, Zhongyi Yang","doi":"10.1002/wer.70159","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus recovery from municipal sludge is essential to reduce environmental pollution and address the global phosphorus crisis. This study introduces a magnetic Fe/Mg/Zn-layered double hydroxide (LDH) composite for simultaneous phosphorus recovery and sludge dewatering from municipal wastewater. The synthesized composite exhibits a high phosphorus adsorption capacity of 25.79 mg/g, a reduction in sludge-specific resistance by 77.43%, and a 24.95% decrease in moisture content. The phosphorus adsorption process follows a pseudo-second-order kinetic model and Langmuir isotherm, and chemisorption mainly drives phosphorus adsorption. The characterization results showed that precipitation, complexation, and ligand exchange were the main adsorption mechanisms of phosphorus. The material maintains excellent performance across a wide pH range (3-11), with over 90% phosphorus removal efficiency after 5 cycles of adsorption-desorption. These results demonstrate the material's potential for sustainable and cost-effective phosphorus recovery and sludge management in wastewater treatment plants.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 8","pages":"e70159"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Magnetic LDHs for Simultaneous Sludge Dewatering and Phosphorus Recovery: A Scalable Approach for Municipal Wastewater Plants.\",\"authors\":\"Weiliang Cao, Hongwei Song, Manlin Li, Zhongyi Yang\",\"doi\":\"10.1002/wer.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphorus recovery from municipal sludge is essential to reduce environmental pollution and address the global phosphorus crisis. This study introduces a magnetic Fe/Mg/Zn-layered double hydroxide (LDH) composite for simultaneous phosphorus recovery and sludge dewatering from municipal wastewater. The synthesized composite exhibits a high phosphorus adsorption capacity of 25.79 mg/g, a reduction in sludge-specific resistance by 77.43%, and a 24.95% decrease in moisture content. The phosphorus adsorption process follows a pseudo-second-order kinetic model and Langmuir isotherm, and chemisorption mainly drives phosphorus adsorption. The characterization results showed that precipitation, complexation, and ligand exchange were the main adsorption mechanisms of phosphorus. The material maintains excellent performance across a wide pH range (3-11), with over 90% phosphorus removal efficiency after 5 cycles of adsorption-desorption. These results demonstrate the material's potential for sustainable and cost-effective phosphorus recovery and sludge management in wastewater treatment plants.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"97 8\",\"pages\":\"e70159\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.70159\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70159","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Cost-Effective Magnetic LDHs for Simultaneous Sludge Dewatering and Phosphorus Recovery: A Scalable Approach for Municipal Wastewater Plants.
Phosphorus recovery from municipal sludge is essential to reduce environmental pollution and address the global phosphorus crisis. This study introduces a magnetic Fe/Mg/Zn-layered double hydroxide (LDH) composite for simultaneous phosphorus recovery and sludge dewatering from municipal wastewater. The synthesized composite exhibits a high phosphorus adsorption capacity of 25.79 mg/g, a reduction in sludge-specific resistance by 77.43%, and a 24.95% decrease in moisture content. The phosphorus adsorption process follows a pseudo-second-order kinetic model and Langmuir isotherm, and chemisorption mainly drives phosphorus adsorption. The characterization results showed that precipitation, complexation, and ligand exchange were the main adsorption mechanisms of phosphorus. The material maintains excellent performance across a wide pH range (3-11), with over 90% phosphorus removal efficiency after 5 cycles of adsorption-desorption. These results demonstrate the material's potential for sustainable and cost-effective phosphorus recovery and sludge management in wastewater treatment plants.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.