{"title":"Vascular dysfunction in Hutchinson-Gilford progeria syndrome.","authors":"Yaping Zhao, Li Wang, Suowen Xu","doi":"10.1016/j.molmed.2024.12.008","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.008","url":null,"abstract":"<p><p>Most patients with Hutchinson-Gilford progeria syndrome (HGPS) succumb to cardiovascular disease. Recent studies by Barettino et al., Cardoso et al., and Vakili et al. utilized progeria mouse models to elucidate novel mechanisms by which vascular smooth muscle cell (VSMC) and endothelial cell (EC) dysfunction accelerate the progress of the disease, thus providing directions for the development of new targeted pharmaco-therapies.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leire Arrizabalaga, Esmeralda García-Torralba, Lorenzo Galluzzi, Aitziber Buqué
{"title":"Targeting CDK2 to circumvent treatment resistance in HR<sup>+</sup> breast cancer.","authors":"Leire Arrizabalaga, Esmeralda García-Torralba, Lorenzo Galluzzi, Aitziber Buqué","doi":"10.1016/j.molmed.2024.12.009","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.009","url":null,"abstract":"<p><p>Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR<sup>+</sup> breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-chain fatty acids in fetal development and metabolism.","authors":"Xueyun Qin, Mo Zhang, Shiting Chen, Yunhui Tang, Jiajun Cui, Guolian Ding","doi":"10.1016/j.molmed.2024.11.014","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.014","url":null,"abstract":"<p><p>Short-chain fatty acids (SCFAs), primarily derived from gut microbiota, play a role in regulating fetal development; however, the mechanism remains unclear. Fetal SCFAs levels depends on maternal SCFAs transported via the placenta. Metabolic stress, particularly from diabetes and obesity, can disrupt maternal SCFAs levels, impairing fetal metabolic reprogramming. Dysregulated SCFAs may negatively impact the development of the fetal cardiovascular, nervous, and immune systems, potentially contributing to adverse outcomes in adulthood. This review focuses on recent advances regarding the role of maternal SCFAs in shaping the metabolic profile of offspring, especially in the context of various maternal metabolic disorders. Given that SCFAs may influence fetal development through the placenta-embryo axis, targeted SCFAs supplementation could be a promising strategy against developmental diseases associated with intrauterine risk factors.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New therapeutic approaches for fibrosis: harnessing translational regulation.","authors":"Sumeen Kaur Gill, Richard H Gomer","doi":"10.1016/j.molmed.2024.11.012","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.012","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating lung disease characterized by excessive extracellular matrix deposition and tissue scarring. The median survival of patients with IPF is only 4.5 years following diagnosis, and effective treatment options are scarce. Recent studies found aberrant translation of specific mRNAs in various fibrosing diseases, highlighting the role of key translational regulators, including RNA binding proteins (RBPs), microRNAs, long noncoding RNAs, and transcript modifications. Notably, when inhibited, 10 profibrotic RBPs cause a significant attenuation of fibrosis, illuminating potential therapeutic targets. In this review, we describe translational regulation in fibrosis and highlight a model where a conserved evolutionary mechanism may explain this regulation.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Galectin-3 in metabolic disorders: mechanisms and therapeutic potential.","authors":"Qian Jiang, Qijin Zhao, Pingping Li","doi":"10.1016/j.molmed.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.006","url":null,"abstract":"<p><p>Galectin-3 (Gal3), a β-galactoside-binding lectin, is expressed predominantly in immunological and inflammatory cells. Gal3 expression is elevated in metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD), and plays an important role in the progression of these diseases. In this review, we summarize the structure and post-translational modifications of Gal3 and the cellular functions of Gal3 according to its subcellular localization. We focused on the pathological functions and molecular mechanisms of Gal3 in various cell types. In particular, extracellular Gal3 and intracellular Gal3 may have different physiological and pathological functions. We also discuss promising Gal3 inhibitors or antibodies that are currently in clinical trials and outstanding questions and challenges for future pursuit.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichen Yang, Hongru Shen, Kexin Chen, Xiangchun Li
{"title":"From pixels to patients: the evolution and future of deep learning in cancer diagnostics.","authors":"Yichen Yang, Hongru Shen, Kexin Chen, Xiangchun Li","doi":"10.1016/j.molmed.2024.11.009","DOIUrl":"10.1016/j.molmed.2024.11.009","url":null,"abstract":"<p><p>Deep learning has revolutionized cancer diagnostics, shifting from pixel-based image analysis to more comprehensive, patient-centric care. This opinion article explores recent advancements in neural network architectures, highlighting their evolution in biomedical research and their impact on medical imaging interpretation and multimodal data integration. We emphasize the need for domain-specific artificial intelligence (AI) systems capable of handling complex clinical tasks, advocating for the development of multimodal large language models that can integrate diverse data sources. These models have the potential to significantly enhance the precision and efficiency of cancer diagnostics, transforming AI from a supplementary tool into a core component of clinical decision-making, ultimately improving patient outcomes and advancing cancer care.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bursts of brain erosion: seizures and age-dependent neurological vulnerability.","authors":"Noemie Cresto, Laurent Givalois, Jerome Badaut, Alicia Janvier, Athenais Genin, Etienne Audinat, Amy L Brewster, Nicola Marchi","doi":"10.1016/j.molmed.2024.11.003","DOIUrl":"10.1016/j.molmed.2024.11.003","url":null,"abstract":"<p><p>Hypersynchronous and exaggerated neuronal firing, exemplified by epileptiform activity and seizures, are disruptors of brain function across acute and chronic neuropathological conditions. Here, we focus on how seizure activity, whether as a primary symptom or a secondary comorbid event within a complex pathological setting, adversely impacts neurological trajectories. We discuss experimental and clinical evidence illustrating the participation of neurodegenerative and senescence-like adaptations. Paroxysmal neuronal events, through bidirectional causality, are linked with immune and microvascular changes, disrupting cellular homeostasis and creating a feed-forward loop that intertwines with age-related frailty to deteriorate mental health. We emphasize the clinical significance of early detection of these brain vulnerabilities through biomarkers, monitoring neurodevelopmental risks in children, and tracking neurodegenerative disease progression in aging populations.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Chen, Weian Mao, Yanting Shen, Honing Huang, Hsun-Ming Chang, Xi Dong, Jingjing Jiang, Liangshan Mu
{"title":"Unveiling the biological functions and therapeutic potentials of LONP1 in the ovary.","authors":"Yi Chen, Weian Mao, Yanting Shen, Honing Huang, Hsun-Ming Chang, Xi Dong, Jingjing Jiang, Liangshan Mu","doi":"10.1016/j.molmed.2024.11.010","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.010","url":null,"abstract":"<p><p>Recent research highlights that Lon protease 1 (LONP1) regulates steroidogenesis in the ovary and plays a role in oocyte development and quality control. Dysregulation of LONP1 has been observed in polycystic ovary syndrome and ovarian aging. This forum article explores the role of LONP1 in the ovary and its therapeutic potential.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer.","authors":"Chiara Naro, Veronica Ruta, Claudio Sette","doi":"10.1016/j.molmed.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.007","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by dismal prognosis. Late diagnosis, resistance to chemotherapy, and lack of efficacious targeted therapies render PDAC almost untreatable. Dysregulation of splicing, the process that excises the introns from nascent transcripts, is emerging as a hallmark of PDAC and a possible vulnerability of this devastating cancer. Splicing factors are deregulated in PDAC and contribute to all steps of tumorigenesis, from inflammation-related early events to metastasis and acquisition of chemoresistance. At the same time, splicing dysregulation offers a therapeutic opportunity to target cancer-specific vulnerabilities. We discuss mounting evidence that splicing plays a key role in PDAC and the opportunities that this essential process offers for developing new targeted therapies.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and opportunities for conceiving genetically diverse sickle cell mice.","authors":"Rafiou Agoro, Gary A Churchill","doi":"10.1016/j.molmed.2024.11.004","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.11.004","url":null,"abstract":"<p><p>A milestone in sickle cell disease (SCD) therapeutics was achieved in December 2023 with the FDA-approved gene therapy for patients aged 12 years and older. However, these therapies may only suit a fraction of patients because of cost or health risks. A better understanding of SCD outcome heterogeneity is needed to propose patient-specific pharmacological interventions. To achieve this, humanized and genetically diverse mouse models are essential for associating candidate genotypes with specific hematological traits, organ function, and disease resilience. Here, we discuss the challenges and opportunities in developing genetically diverse sickle cell mice (GDS mice). These models are expected to complement current approaches in SCD research and enhance our understanding of SCD heterogeneity and anemia.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}