Mariana Lapo Pais, Miguel Castelo-Branco, Joana Gonçalves
{"title":"Brain-related sexual dimorphism in tuberous sclerosis complex: an overlooked matter.","authors":"Mariana Lapo Pais, Miguel Castelo-Branco, Joana Gonçalves","doi":"10.1016/j.molmed.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.molmed.2025.01.002","url":null,"abstract":"<p><p>Biological sex strongly impacts tuberous sclerosis complex (TSC) symptoms like epilepsy and autism. However, the mechanisms driving this influence remain largely unknown. Here, we discuss how sex-specific changes in brain synapses and neural networks may drive these differences, offering insights that could be crucial for developing targeted therapies for TSC.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichen Yang, Hongru Shen, Kexin Chen, Xiangchun Li
{"title":"From pixels to patients: the evolution and future of deep learning in cancer diagnostics: (Trends in Molecular Medicine, published online December 11, 2024).","authors":"Yichen Yang, Hongru Shen, Kexin Chen, Xiangchun Li","doi":"10.1016/j.molmed.2024.12.012","DOIUrl":"10.1016/j.molmed.2024.12.012","url":null,"abstract":"","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probiotics in inflammatory bowel disease: microbial modulation and therapeutic prospects.","authors":"Omar P Vallejos, Susan M Bueno, Alexis M Kalergis","doi":"10.1016/j.molmed.2024.12.005","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.005","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic inflammatory disorder that represents a significant public health challenge worldwide. This multifactorial condition results from complex interactions among genetic, environmental, immune, and microbial factors. Some beneficial microbes, known as probiotics, have been identified as promising therapeutic agents for inflammatory conditions, such as IBD. In this review, we explore the potential of probiotics as a therapeutic strategy for managing IBD. Probiotics have shown promise due to their ability to modulate the gut microbiota, regulate histamine levels, and enhance vitamin D metabolism, thereby promoting a tolerant immune profile and reducing inflammation. While the exact mechanisms underlying these benefits remain incompletely understood, probiotics represent a novel and emerging approach for alleviating the exacerbated inflammation characteristic of this disorder.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut microbiota and bilirubin metabolism: unveiling new pathways in health and disease.","authors":"Libor Vítek, Claudio Tiribelli","doi":"10.1016/j.molmed.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.007","url":null,"abstract":"<p><p>Bilirubin reductase (BilR), a gut microbiota-derived enzyme that reduces bilirubin to urobilinogen, was recently identified. Given the role of bilirubin in preventing modern diseases, understanding the link between the gut microbiota and health via modulation of bilirubin metabolism marks a major advance in medical research and potential treatments.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahil Alhumaidi, Huihui Huang, Marie Christelle Saade, Amanda J Clark, Samir M Parikh
{"title":"NAD<sup>+</sup> metabolism in acute kidney injury and chronic kidney disease transition.","authors":"Rahil Alhumaidi, Huihui Huang, Marie Christelle Saade, Amanda J Clark, Samir M Parikh","doi":"10.1016/j.molmed.2024.12.004","DOIUrl":"10.1016/j.molmed.2024.12.004","url":null,"abstract":"<p><p>Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD<sup>+</sup> metabolism. Recent advancements have highlighted the critical role of NAD<sup>+</sup> metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD<sup>+</sup> metabolism, and proposes several cellular processes through which acute aberrations in NAD<sup>+</sup> may contribute to long-term changes in the kidney.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanocarrier vaccines for respiratory infections.","authors":"Yinghan Jiang, Luping Lei, Mengyuan Zhao, Yuxin Tian, Yuanyu Huang, Minghui Yang","doi":"10.1016/j.molmed.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.molmed.2024.12.002","url":null,"abstract":"<p><p>Respiratory infections continue to pose a major global health challenge, leading to high morbidity and mortality. Effective vaccines are crucial for prevention of these, and nanotechnology offers a promising approach to enhance vaccine efficacy through nanocarrier systems. This review explores recent advances in nanocarrier-based vaccines for respiratory pathogens, focusing on their ability to promote mucosal immunity against viral infections. It examines various types of nanocarriers, their physicochemical properties, and their role in improving vaccine delivery and immune responses. Additionally, the review examines key findings from both preclinical and clinical studies, highlighting the progress and challenges in developing nanocarrier vaccines for respiratory infections. These insights underscore the potential of nanotechnology to transform vaccine strategies and address unmet needs in respiratory disease prevention.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resident physician depression: systemic challenges and possible solutions.","authors":"Karina Pereira-Lima, Srijan Sen","doi":"10.1016/j.molmed.2024.08.001","DOIUrl":"10.1016/j.molmed.2024.08.001","url":null,"abstract":"<p><p>Resident physicians face intense stressors that significantly heighten their depression risk. This article discusses research findings on critical factors contributing to depression among resident physicians. Understanding these factors is essential to developing targeted interventions, fostering healthy work environments, and ultimately improving physician wellbeing and patient care.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"1-3"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiliang Xia, Hongyan Zhao, Jacob L Edmondson, Brian Koss, Fenghuang Zhan
{"title":"Role of NEK2 in tumorigenesis and tumor progression.","authors":"Jiliang Xia, Hongyan Zhao, Jacob L Edmondson, Brian Koss, Fenghuang Zhan","doi":"10.1016/j.molmed.2024.07.013","DOIUrl":"10.1016/j.molmed.2024.07.013","url":null,"abstract":"<p><p>Never in mitosis A (NIMA)-related kinase 2 (NEK2) is a serine/threonine kinase found in the nucleus and cytoplasm throughout the cell cycle. NEK2 is overexpressed in many cancers and is a biomarker of poor prognosis. Factors contributing to NEK2 elevation in cancer cells include oncogenic transcription factors, decreased ubiquitination, DNA methylation, and the circular RNA (circRNA)/long noncoding RNA (lncRNA)-miRNA axis. NEK2 overexpression produces chromosomal instability and aneuploidy, thereby enhancing cancer progression and suppressing antitumor immunity, which highlights the prominence of NEK2 in tumorigenesis and tumor progression. Small-molecule inhibitors targeting NEK2 have demonstrated promising therapeutic potential in vitro and in vivo across various cancer types. This review outlines the regulatory mechanisms of NEK2 expression, emphasizes its functional roles in cancer initiation and progression, and highlights the anticancer properties of NEK2 inhibitors.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"79-93"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meenal Datta, Laura E Via, Véronique Dartois, Lei Xu, Clifton E Barry, Rakesh K Jain
{"title":"Leveraging insights from cancer to improve tuberculosis therapy.","authors":"Meenal Datta, Laura E Via, Véronique Dartois, Lei Xu, Clifton E Barry, Rakesh K Jain","doi":"10.1016/j.molmed.2024.07.011","DOIUrl":"10.1016/j.molmed.2024.07.011","url":null,"abstract":"<p><p>Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"11-20"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbes and mood: innovative biomarker approaches in depression.","authors":"Miranda Green, Madhukar H Trivedi, Jane A Foster","doi":"10.1016/j.molmed.2024.09.002","DOIUrl":"10.1016/j.molmed.2024.09.002","url":null,"abstract":"<p><p>Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"50-63"},"PeriodicalIF":12.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}