Trends in molecular medicine最新文献

筛选
英文 中文
Genetic causes of obesity: mapping a path forward.
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-14 DOI: 10.1016/j.molmed.2025.02.002
Ruth J F Loos
{"title":"Genetic causes of obesity: mapping a path forward.","authors":"Ruth J F Loos","doi":"10.1016/j.molmed.2025.02.002","DOIUrl":"https://doi.org/10.1016/j.molmed.2025.02.002","url":null,"abstract":"<p><p>Over the past 30 years, significant progress has been made in understanding the genetic causes of obesity. In the coming years, catalogs that map each genetic variant to its genomic function are expected to accelerate variant-to-function (V2F) translation. Given that obesity is a heterogeneous disease, research will have to move beyond body mass index (BMI). Gene discovery efforts for more refined adiposity traits are poised to reveal additional genetic loci, pointing to new biological mechanisms. Obesity genetics research is reaching unprecedented heights and, along with a renewed interest in the development of weight-loss medication, it holds the potential to identify new drug targets. Polygenic scores (PGSs) that predict obesity risk are expected to further improve and will be particularly valuable early in life for timely prevention.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant challenges to translating breakthrough science in Mexico. 墨西哥在转化突破性科学方面面临重大挑战。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-11-08 DOI: 10.1016/j.molmed.2024.10.011
Carlos Federico Cota-Romero, Guillermo Aquino-Jarquin
{"title":"Significant challenges to translating breakthrough science in Mexico.","authors":"Carlos Federico Cota-Romero, Guillermo Aquino-Jarquin","doi":"10.1016/j.molmed.2024.10.011","DOIUrl":"10.1016/j.molmed.2024.10.011","url":null,"abstract":"<p><p>Translational medicine is crucial for addressing health issues and translating research findings to improve population health. This Science and Society article highlights the potential of translational medicine in Mexico. It discusses the obstacles and challenges encountered in the translation process, instilling a sense of optimism for the future of healthcare in Mexico.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"197-201"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular evolution of central nervous system metastasis and therapeutic implications. 中枢神经系统转移的分子演化及治疗意义。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-10-17 DOI: 10.1016/j.molmed.2024.09.008
David Gritsch, Priscilla K Brastianos
{"title":"Molecular evolution of central nervous system metastasis and therapeutic implications.","authors":"David Gritsch, Priscilla K Brastianos","doi":"10.1016/j.molmed.2024.09.008","DOIUrl":"10.1016/j.molmed.2024.09.008","url":null,"abstract":"<p><p>The increasing prevalence and poor prognosis of central nervous system (CNS) metastases pose a significant challenge in oncology, necessitating improved therapeutic strategies. Recent research has shed light on the complex genomic landscape of brain metastases, identifying unique and potentially actionable genetic alterations. These insights offer new avenues for targeted therapy, highlighting the potential of precision medicine approaches in treating CNS metastases. However, translating these discoveries into clinical practice requires overcoming challenges such as availability of tissue for characterization, access to molecular testing, drug delivery across the blood-brain barrier (BBB) and addressing intra- and intertumoral genetic heterogeneity. This review explores novel insights into the evolution of CNS metastases, the molecular mechanisms underlying their development, and implications for therapeutic interventions.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"240-251"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting proteostasis by cAMP/PKA and cGMP/PKG. 通过 cAMP/PKA 和 cGMP/PKG 促进蛋白稳态。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-10-29 DOI: 10.1016/j.molmed.2024.10.006
Md Salim Ahammed, Xuejun Wang
{"title":"Promoting proteostasis by cAMP/PKA and cGMP/PKG.","authors":"Md Salim Ahammed, Xuejun Wang","doi":"10.1016/j.molmed.2024.10.006","DOIUrl":"10.1016/j.molmed.2024.10.006","url":null,"abstract":"<p><p>Proteasome functional insufficiency (PFI) is implicated in neurodegeneration and heart failure, where aberrant protein aggregation is common and impairs the ubiquitin (Ub)-proteasome system (UPS), exacerbating increased proteotoxic stress (IPTS) and creating a vicious circle. Breaking this circle represents a key to treating these diseases. Protein kinase (PK)-A and PKG can activate the proteasome and promote proteasomal degradation of misfolded proteins. PKA does so by phosphorylating Ser14-RPN6/PSMD11, but how PKG activates the proteasome remains unknown. Emerging evidence supports a strategy to treat diseases with IPTS by augmenting cAMP/PKA and cGMP/PKG. Conceivably, targeted activation of PKA and PKG at proteasome nanodomains would minimize the undesired effects from their actions on other targets. In this review, we discuss PKA and PKG regulation of proteostasis via the UPS.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"224-239"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging translational gaps in Mexico's new science era.
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2025-01-21 DOI: 10.1016/j.molmed.2025.01.003
Eduardo Perez-Campos, Victor Del Rio, Hector A Cabrera-Fuentes
{"title":"Bridging translational gaps in Mexico's new science era.","authors":"Eduardo Perez-Campos, Victor Del Rio, Hector A Cabrera-Fuentes","doi":"10.1016/j.molmed.2025.01.003","DOIUrl":"10.1016/j.molmed.2025.01.003","url":null,"abstract":"","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"202-203"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. 骨关节炎中的骨脑串扰:病理生理学和干预措施。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-10-21 DOI: 10.1016/j.molmed.2024.09.006
Yilan Tang, Zhiyan Wang, Jin Cao, Yiheng Tu
{"title":"Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions.","authors":"Yilan Tang, Zhiyan Wang, Jin Cao, Yiheng Tu","doi":"10.1016/j.molmed.2024.09.006","DOIUrl":"10.1016/j.molmed.2024.09.006","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"281-295"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune-mediated colitis after immune checkpoint inhibitor therapy. 免疫检查点抑制剂治疗后的免疫介导结肠炎。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-10-29 DOI: 10.1016/j.molmed.2024.09.009
Sophie Giesler, Roxane Riemer, Theresa Lowinus, Robert Zeiser
{"title":"Immune-mediated colitis after immune checkpoint inhibitor therapy.","authors":"Sophie Giesler, Roxane Riemer, Theresa Lowinus, Robert Zeiser","doi":"10.1016/j.molmed.2024.09.009","DOIUrl":"10.1016/j.molmed.2024.09.009","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have led to improved outcome in patients with various types of cancer. Due to inhibition of physiological anti-inflammatory mechanisms, patients treated with ICIs may develop autoimmune inflammation of the colon, associated with morbidity, decreased quality of life (QoL), and mortality. In this review, we summarize clinical and pathophysiological aspects of immune-mediated colitis (ImC), highlighting novel treatment options. In the colon, ICIs trigger resident and circulating T cell activation and infiltration of myeloid cells. In addition, the gut microbiota critically contribute to intestinal immune dysregulation and loss of barrier function, thereby propagating local and systemic inflammation. Currently available therapies for ImC include corticosteroids, antitumor necrosis factor-α (TNF-α)- and anti-integrin α<sub>4</sub>β<sub>7</sub> antibodies. Given that systemic immunosuppression might impair antitumor immune responses, novel therapeutic approaches are urgently needed.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"265-280"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clonal hematopoiesis of indeterminate potential: the root cause of, and fertile ground for, hematological malignancies. 具有不确定潜能的克隆造血:血液恶性肿瘤的根源和沃土。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2024-10-25 DOI: 10.1016/j.molmed.2024.10.005
Qiqi Zhuang, Shengjie Jin, Wei Wang, Yan Wang, Hongyan Tong, Zuyun Liu, Jie Sun
{"title":"Clonal hematopoiesis of indeterminate potential: the root cause of, and fertile ground for, hematological malignancies.","authors":"Qiqi Zhuang, Shengjie Jin, Wei Wang, Yan Wang, Hongyan Tong, Zuyun Liu, Jie Sun","doi":"10.1016/j.molmed.2024.10.005","DOIUrl":"10.1016/j.molmed.2024.10.005","url":null,"abstract":"<p><p>Clonal hematopoiesis (CH) of indeterminate potential (CHIP), characterized by propagation of blood cell clones carrying somatic mutations in specific driver genes, is increasingly recognized as a critical factor in the development of hematological malignancies. This phenomenon, which often emerges with age, underscores the complex interplay between genetic predisposition and environmental influences in cancer initiation and progression. Recent years have witnessed significant advances in our understanding of the link between CHIP and hematological diseases. In this review, we provide a comprehensive overview of the features of CHIP and explore its role in promoting tumorigenesis and influencing treatment outcomes for blood cancers. Finally, we summarize current available tools for risk stratification and discuss management strategies for patients with CHIP.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"252-264"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling 'lost in translation' issues: a response to Perez-Campos et al.
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2025-01-28 DOI: 10.1016/j.molmed.2025.01.007
Guillermo Aquino-Jarquin
{"title":"Tackling 'lost in translation' issues: a response to Perez-Campos et al.","authors":"Guillermo Aquino-Jarquin","doi":"10.1016/j.molmed.2025.01.007","DOIUrl":"10.1016/j.molmed.2025.01.007","url":null,"abstract":"","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"204-205"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pi-ecing together brain calcification mechanisms for therapeutic advancement. 结合脑钙化机制促进治疗进展。
IF 12.8 1区 医学
Trends in molecular medicine Pub Date : 2025-03-01 Epub Date: 2025-01-04 DOI: 10.1016/j.molmed.2024.12.003
Åse K Bekkelund, Anette Siggervåg, Henriette Aksnes
{"title":"P<sub>i</sub>-ecing together brain calcification mechanisms for therapeutic advancement.","authors":"Åse K Bekkelund, Anette Siggervåg, Henriette Aksnes","doi":"10.1016/j.molmed.2024.12.003","DOIUrl":"10.1016/j.molmed.2024.12.003","url":null,"abstract":"<p><p>Seven primary familial brain calcification genes have been identified but their role in disease mechanisms has been less explored. Cheng et al. recently demonstrated that astrocyte-mediated regulation of brain phosphate (P<sub>i</sub>) involves direct and functional interactions among three of these proteins, paving the way for new strategies to combat brain calcification.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"206-208"},"PeriodicalIF":12.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信