Ilaria Dorigatti, Katy A M Gaythorpe, Victoria M Cox, Francis A Windram, Lauren Cator
{"title":"Priorities for modelling arbovirus transmission under climate change.","authors":"Ilaria Dorigatti, Katy A M Gaythorpe, Victoria M Cox, Francis A Windram, Lauren Cator","doi":"10.1016/j.molmed.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>The transmission potential of arboviruses is extremely sensitive to environmental conditions. This sensitivity is due to both their intimate relationship with ectothermic vectors and, in many cases, also to the involvement of multiple host species in zoonotic transmission cycles. Here, we review how climate change will alter the transmission ecology and risk of these important infections. The challenge of predicting how climate change will impact these systems is daunting, but the need for tools to manage arbovirus risk under climate change is urgent and imperative. We argue that the development of climate-driven mechanistic models of disease transmission informed by empirical surveillance data is urgently needed to inform future responses and for generating the evidence that policy needs to tackle this global public health risk.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmed.2025.05.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transmission potential of arboviruses is extremely sensitive to environmental conditions. This sensitivity is due to both their intimate relationship with ectothermic vectors and, in many cases, also to the involvement of multiple host species in zoonotic transmission cycles. Here, we review how climate change will alter the transmission ecology and risk of these important infections. The challenge of predicting how climate change will impact these systems is daunting, but the need for tools to manage arbovirus risk under climate change is urgent and imperative. We argue that the development of climate-driven mechanistic models of disease transmission informed by empirical surveillance data is urgently needed to inform future responses and for generating the evidence that policy needs to tackle this global public health risk.
期刊介绍:
Trends in Molecular Medicine (TMM) aims to offer concise and contextualized perspectives on the latest research advancing biomedical science toward better diagnosis, treatment, and prevention of human diseases. It focuses on research at the intersection of basic biology and clinical research, covering new concepts in human biology and pathology with clear implications for diagnostics and therapy. TMM reviews bridge the gap between bench and bedside, discussing research from preclinical studies to patient-enrolled trials. The major themes include disease mechanisms, tools and technologies, diagnostics, and therapeutics, with a preference for articles relevant to multiple themes. TMM serves as a platform for discussion, pushing traditional boundaries and fostering collaboration between scientists and clinicians. The journal seeks to publish provocative and authoritative articles that are also accessible to a broad audience, inspiring new directions in molecular medicine to enhance human health.