Mallory L S Eisel, Matthew Burns, Tetsuo Ashizawa, Barry Byrne, Manuela Corti, Sub H Subramony
{"title":"Emerging therapies in hereditary ataxias.","authors":"Mallory L S Eisel, Matthew Burns, Tetsuo Ashizawa, Barry Byrne, Manuela Corti, Sub H Subramony","doi":"10.1016/j.molmed.2024.07.008","DOIUrl":"10.1016/j.molmed.2024.07.008","url":null,"abstract":"<p><p>Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"181-194"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa M Meeks, Mytien Nguyen, Karina Pereira-Lima, Zoie C Sheets, Rylee Betchkal, Bonnielin K Swenor
{"title":"The inaccessible road to science for people with disabilities.","authors":"Lisa M Meeks, Mytien Nguyen, Karina Pereira-Lima, Zoie C Sheets, Rylee Betchkal, Bonnielin K Swenor","doi":"10.1016/j.molmed.2024.08.006","DOIUrl":"10.1016/j.molmed.2024.08.006","url":null,"abstract":"<p><p>This article examines the contributions of disabled scientists and the barriers they face, including systemic ableism and lack of inclusivity. It offers recommendations to foster an inclusive STEM environment, underscoring the importance of supporting disabled scientists to boost innovation and equity.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"97-99"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lay Shuen Tan, Hwee Hui Lau, Essam M Abdelalim, Chin Meng Khoo, Richard M O'Brien, E Shyong Tai, Adrian Kee Keong Teo
{"title":"The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy.","authors":"Lay Shuen Tan, Hwee Hui Lau, Essam M Abdelalim, Chin Meng Khoo, Richard M O'Brien, E Shyong Tai, Adrian Kee Keong Teo","doi":"10.1016/j.molmed.2024.09.005","DOIUrl":"10.1016/j.molmed.2024.09.005","url":null,"abstract":"<p><p>Glucose-6-phosphatase catalytic subunit (G6PC)1 and G6PC2 are crucial for glucose metabolism, regulating processes like glycolysis, gluconeogenesis, and glycogenolysis. Despite their structural and functional similarities, G6PC1 and G6PC2 exhibit distinct tissue-specific expression patterns, G6P hydrolysis kinetics, and physiological functions. This review provides a comprehensive overview of their enzymology and distinct roles in glucose homeostasis. We examine how inactivating mutations in G6PC1 lead to glycogen storage disease, and how elevated G6PC1 and G6PC2 expression can affect the incidence of diabetic complications, risk for type 2 diabetes mellitus (T2DM) and various cancers. We also discuss the potential of inhibiting G6PC1 and G6PC2 to protect against complications from elevated blood glucose levels, and highlight drug development efforts targeting G6PC1 and G6PC2, and the therapeutic potential of inhibitors for disease prevention.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"152-164"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna L Simpson, Eline Smits, Renée Moerkens, Cisca Wijmenga, Joram Mooiweer, Iris H Jonkers, Sebo Withoff
{"title":"Human organoids and organ-on-chips in coeliac disease research.","authors":"Hanna L Simpson, Eline Smits, Renée Moerkens, Cisca Wijmenga, Joram Mooiweer, Iris H Jonkers, Sebo Withoff","doi":"10.1016/j.molmed.2024.10.003","DOIUrl":"10.1016/j.molmed.2024.10.003","url":null,"abstract":"<p><p>Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"117-137"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging roles of cyclin-dependent kinase 7 in health and diseases.","authors":"Mahder Dawit Belew, Jingrui Chen, Zhaokang Cheng","doi":"10.1016/j.molmed.2024.09.004","DOIUrl":"10.1016/j.molmed.2024.09.004","url":null,"abstract":"<p><p>Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"138-151"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Georges Dimitrov, Bernhard Ryffel, Dieudonnée Togbe, Valérie Quesniaux
{"title":"cGAS-STING DNA-sensing in inflammatory bowel diseases.","authors":"Georges Dimitrov, Bernhard Ryffel, Dieudonnée Togbe, Valérie Quesniaux","doi":"10.1016/j.molmed.2024.10.002","DOIUrl":"10.1016/j.molmed.2024.10.002","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are chronic, incurable pathologies with unknown causes, affecting millions of people. Pediatric-onset IBD, starting before the age of 18 years, are increasing, with more aggressive and extensive features than adult-onset IBD. These differences remain largely unexplained. Intestinal mucosal damage, cell death, DNA release from nuclear, mitochondrial, or microbiota sources, and DNA-sensing activating the cGAS-STING pathway may contribute to disease evolution. Increased colonic cGAS and STING are increasingly reported in experimental and human IBD. However, limited knowledge of the mechanisms involved hinders the development of new therapeutic options. Here, we discuss recent advances and unresolved questions regarding DNA release, DNA sensor activation, and the role and therapeutic potential of the cGAS-STING pathway in inflammatory colitis.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":"165-180"},"PeriodicalIF":12.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brett Henshey, Ana Carneiro, Kecheng Lei, David Schaffer, Nicholas M Boulis
{"title":"Adeno-associated viral vector targeted evolution for neurofibromatosis gene delivery.","authors":"Brett Henshey, Ana Carneiro, Kecheng Lei, David Schaffer, Nicholas M Boulis","doi":"10.1016/j.molmed.2025.01.004","DOIUrl":"10.1016/j.molmed.2025.01.004","url":null,"abstract":"<p><p>Neurofibromatosis type 1 (NF1) is an inherited genetic disease resulting from pathogenic mutations in NF1 that drive tumor formation along peripheral nerves, leading to many functional consequences. Tumor removal or treatment often results in regrowth and/or nerve damage. Addressing NF1 pathogenic variations at the cellular level through gene therapy holds great potential for long-term treatment of patients with NF1. Adeno-associated viruses (AAVs) are broadly used gene delivery vehicles for gene therapies because of their low pathogenicity, ability to transduce nondividing cells, and potential for long-term gene expression. This article explores the landscape of AAV-mediated gene delivery strategies for NF1, discusses the challenges of efficient delivery to relevant cell types, and highlights the progress in vector design strategies.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A researcher's guide to studying sex differences in immune aging.","authors":"Clayton Baker, Minhoo Kim, Bérénice A Benayoun","doi":"10.1016/j.molmed.2025.01.005","DOIUrl":"https://doi.org/10.1016/j.molmed.2025.01.005","url":null,"abstract":"<p><p>Sex differences in immune system aging significantly impact disease susceptibility and vaccine responses among older adults, but with notable disparities between men and women. This area has gained importance because vaccines can exhibit differential efficacy by sex in aging populations, underscoring the need for sex-specific strategies. As the global population ages, understanding these sex-based immune differences is crucial for developing targeted interventions for age-related diseases. Addressing these disparities requires robust preclinical models that mimic human immune aging to uncover mechanisms and inform personalized approaches. In this review we assess the translational potential of preclinical mouse models in studying sex differences in immune aging, and emphasize the urgency of sex-specific interventions to improve health outcomes in older adults.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dysregulation of deubiquitinylases: a linchpin of gastrointestinal diseases.","authors":"Lorena Ferino, Michael Naumann","doi":"10.1016/j.molmed.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.molmed.2025.01.001","url":null,"abstract":"<p><p>Ubiquitinylation of proteins regulates manifold processes and is reversed by deubiquitinylating enzymes (DUBs), which are therefore implicated in a plethora of cellular processes. DUBs are frequently upregulated in many diseases, while in a few cases downregulation of DUBs is associated with disease progression. This review focuses on the involvement of DUBs in the development and progression of gastrointestinal diseases with a particular emphasis on hepatic steatosis and hepatocellular, cholangio-, esophageal, gastric, colorectal, and pancreatic ductal carcinomas. In addition, pathogens that trigger the activity of several DUBs and thus suppress the immune response and cell survival are discussed. Finally, we highlight recent approaches made towards the therapeutic treatment of gastrointestinal diseases using DUB inhibitors.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tackling 'lost in translation' issues: a response to Perez-Campos et al.","authors":"Guillermo Aquino-Jarquin","doi":"10.1016/j.molmed.2025.01.007","DOIUrl":"https://doi.org/10.1016/j.molmed.2025.01.007","url":null,"abstract":"","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}