Tissue engineering and regenerative medicine最新文献

筛选
英文 中文
Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing. 多核苷酸和透明质酸混合物用于皮肤伤口敷料,加速伤口愈合。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-02-26 DOI: 10.1007/s13770-025-00712-1
Tae-Hyun Heo, Bon Kang Gu, Kyungeun Ohk, Jeong-Kee Yoon, Young Hoon Son, Heung Jae Chun, Dae-Hyeok Yang, Gun-Jae Jeong
{"title":"Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing.","authors":"Tae-Hyun Heo, Bon Kang Gu, Kyungeun Ohk, Jeong-Kee Yoon, Young Hoon Son, Heung Jae Chun, Dae-Hyeok Yang, Gun-Jae Jeong","doi":"10.1007/s13770-025-00712-1","DOIUrl":"10.1007/s13770-025-00712-1","url":null,"abstract":"<p><strong>Background: </strong>Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair.</p><p><strong>Methods: </strong>PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days.</p><p><strong>Results: </strong>The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses.</p><p><strong>Conclusion: </strong>The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"515-526"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143504324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Branched Polymer Architecture for Modulating Interactions in Material-Bio Interface. 用于调节材料-生物界面相互作用的支化聚合物结构。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-03-08 DOI: 10.1007/s13770-024-00699-1
Fahimeh Taghavimandi, Min Gyu Kim, Mingyu Lee, Kwangsoo Shin
{"title":"Branched Polymer Architecture for Modulating Interactions in Material-Bio Interface.","authors":"Fahimeh Taghavimandi, Min Gyu Kim, Mingyu Lee, Kwangsoo Shin","doi":"10.1007/s13770-024-00699-1","DOIUrl":"10.1007/s13770-024-00699-1","url":null,"abstract":"<p><strong>Background: </strong>Branched polymers, including star, dendrimers, comb, and biomimetic polymers, are increasingly recognized for their potential in tissue engineering. Their unique architectures and functional properties contribute to enhanced mechanical strength, bioactivity, and adaptability of scaffolds and hydrogels.</p><p><strong>Objective: </strong>This review explores the diverse applications of branched polymers in tissue engineering and regenerative medicine, emphasizing their role in mimicking the extracellular matrix (ECM) and modulating interactions at the material-bio interface. The structural features of branched polymers, including branching density and functional group distribution, are highlighted for their influence on drug delivery, mechanical properties, and cellular interactions.</p><p><strong>Results: </strong>Branched polymers offer distinct advantages in tissue engineering: Star polymers: Provide tunable elasticity and facilitate long-range mechanical networking. Dendrimers: Enable precise functionalization for targeted drug delivery and cell signaling. Comb polymers: Enhance porosity and nutrient exchange in scaffolds. Biomimetic polymers: Mimic natural biological systems, promoting cellular adhesion, proliferation, and differentiation.</p><p><strong>Conclusion: </strong>Branched polymers represent a versatile and promising platform for tissue engineering and regenerative medicine. Their ability to modulate biological interactions and adapt to diverse functional requirements underscores their potential to advance the field.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"481-504"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulation Effects of Porcine Cartilage Acellularized Matrix (pCAM) for Osteoarthritis Treatment. 猪软骨脱细胞基质对骨关节炎的免疫调节作用。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-01-09 DOI: 10.1007/s13770-024-00687-5
Ji Seob Kim, Hyeon Jae Kwon, In Sun Hwang, Young Hwa Lee, Kyung-Noh Yoon, Hee-Woong Yun, Jae-Hyeok Jang, Seo Jeong Kim, Zhoodatova Aiana, Seungwoo Kim, Minhee Moon, Bongki Kim, Byoung Ju Kim, Byung-Hyun Cha
{"title":"Immunomodulation Effects of Porcine Cartilage Acellularized Matrix (pCAM) for Osteoarthritis Treatment.","authors":"Ji Seob Kim, Hyeon Jae Kwon, In Sun Hwang, Young Hwa Lee, Kyung-Noh Yoon, Hee-Woong Yun, Jae-Hyeok Jang, Seo Jeong Kim, Zhoodatova Aiana, Seungwoo Kim, Minhee Moon, Bongki Kim, Byoung Ju Kim, Byung-Hyun Cha","doi":"10.1007/s13770-024-00687-5","DOIUrl":"10.1007/s13770-024-00687-5","url":null,"abstract":"<p><strong>Background: </strong>Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.</p><p><strong>Methods: </strong>pCAM was produced from porcine cartilage through physicochemical processing. LC-MS protein profiling identified the key proteins. In vitro experiments involved treating human synovial cell with pCAM and PN to assess cell viability and reductions in pro-inflammatory cytokines (IL-1β and IL-6). In vivo studies utilized a rat DMM-induced OA model. Pain was evaluated in weight-bearing tests, and inflammation reduction was confirmed using specific macrophage markers of CD68, CD86, and CD163 in immunohistochemical staining of synovial tissue. Cartilage regeneration was evaluated by histopathological analyses.</p><p><strong>Results: </strong>The major protein components of pCAM include factors integral to cartilage and ECM integrity. They also contain proteins that help reduce inflammation. In vitro studies revealed a decrease in pro-inflammatory cytokines and survival of synovial cells were observed. In vivo treatment with pCAM resulted in a reduction of pain and inflammation, while promoting cartilage regeneration, thereby accelerating the healing process in OA.</p><p><strong>Conclusion: </strong>Our findings suggest that pCAM may contribute to the treatment of OA by alleviating synovial inflammation and supporting cartilage regeneration, thereby addressing both the inflammatory and degenerative aspects of the disease.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"453-467"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable Endoplasmin-Loaded Lipid Nanoparticles-Hydrogel Composite for Cartilage Regeneration. 可注射内质酶负载脂质纳米颗粒-水凝胶复合材料用于软骨再生。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-02-24 DOI: 10.1007/s13770-024-00698-2
Sumi Choi, Hyeongrok Choi, Jin Woong Chung, Su-Hwan Kim
{"title":"Injectable Endoplasmin-Loaded Lipid Nanoparticles-Hydrogel Composite for Cartilage Regeneration.","authors":"Sumi Choi, Hyeongrok Choi, Jin Woong Chung, Su-Hwan Kim","doi":"10.1007/s13770-024-00698-2","DOIUrl":"10.1007/s13770-024-00698-2","url":null,"abstract":"<p><strong>Background: </strong>Endoplasmin (ENPL), a heat shock protein 90 family member, promotes chondrogenic differentiation of stem cells by inhibiting ERK1/2 phosphorylation and inducing endoplasmic reticulum stress. However, its large size limits cellular uptake and therapeutic potential. To overcome this challenge, a cationic lipid nanoparticle (C_LNP) system was designed to deliver ENPL intracellularly, enhancing its effects on human tonsil-derived mesenchymal stem cells (hTMSCs).</p><p><strong>Methods: </strong>ENPL-loaded cationic lipid nanoparticles (ENPL_C_LNP) were synthesized to facilitate intracellular ENPL delivery. The delivery efficiency and cytotoxicity were assessed in vitro using hTMSCs. Additionally, ENPL_C_LNPs were incorporated into a hyaluronic acid and chondroitin sulfate-based injectable hydrogel and tested for chondrogenic differentiation potential in a mouse subcutaneous model.</p><p><strong>Results: </strong>ENPL_C_LNP achieved over 80% intracellular protein delivery efficiency with no cytotoxic effects. Co-cultured hTMSCs exhibited increased glycosaminoglycans (GAGs) and collagen expression over 21 days. In vivo, the hydrogel-embedded ENPL_C_LNP system enabled stable cartilage differentiation, evidenced by abundant cartilage-specific lacuna structures in regenerated tissue.</p><p><strong>Conclusion: </strong>Combining ENPL_C_LNP with an injectable hydrogel scaffold supports chondrogenic differentiation and cartilage regeneration, offering a promising strategy for cartilage tissue engineering.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"409-424"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implantable Dental Barrier Membranes as Regenerative Medicine in Dentistry: A Comprehensive Review. 作为牙科再生医学的可植入牙屏障膜:全面回顾。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-02-24 DOI: 10.1007/s13770-025-00704-1
Siyuan Chen, Zhenzhen Wu, Ziqi Huang, Chao Liang, Sang Jin Lee
{"title":"Implantable Dental Barrier Membranes as Regenerative Medicine in Dentistry: A Comprehensive Review.","authors":"Siyuan Chen, Zhenzhen Wu, Ziqi Huang, Chao Liang, Sang Jin Lee","doi":"10.1007/s13770-025-00704-1","DOIUrl":"10.1007/s13770-025-00704-1","url":null,"abstract":"<p><strong>Background: </strong>Periodontitis and bone loss in the maxillofacial and dental areas pose considerable challenges for both functional and aesthetic outcomes. To date, implantable dental barrier membranes, designed to prevent epithelial migration into defects and create a favorable environment for targeted cells, have garnered significant interest from researchers. Consequently, a variety of materials and fabrication methods have been explored in extensive research on regenerative dental barrier membranes.</p><p><strong>Methods: </strong>This review focuses on dental barrier membranes, summarizing the various biomaterials used in membrane manufacturing, fabrication methods, and state-of-the-art applications for dental tissue regeneration. Based on a discussion of the pros and cons of current membrane strategies, future research directions for improved membrane designs are proposed.</p><p><strong>Results and conclusion: </strong>To endow dental membranes with various biological properties that accommodate different clinical situations, numerous biomaterials and manufacturing methods have been proposed. These approaches provide theoretical support and hold promise for advancements in dental tissue regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"527-549"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-Cell or Cell-Biomaterial Interactions for Therapeutic Application. 治疗应用中的细胞-细胞或细胞-生物材料相互作用。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 DOI: 10.1007/s13770-025-00717-w
Han Young Kim, Suk Ho Bhang
{"title":"Cell-Cell or Cell-Biomaterial Interactions for Therapeutic Application.","authors":"Han Young Kim, Suk Ho Bhang","doi":"10.1007/s13770-025-00717-w","DOIUrl":"10.1007/s13770-025-00717-w","url":null,"abstract":"","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"377-379"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Skin Regeneration Efficacy of Human Dermal Fibroblasts Using Carboxymethyl Cellulose-Coated Biodegradable Polymer. 利用羧甲基纤维素包覆的生物可降解聚合物增强人真皮成纤维细胞的皮肤再生功效
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2024-11-23 DOI: 10.1007/s13770-024-00681-x
You Bin Lee, Dong-Hyun Lee, Youn Chul Kim, Suk Ho Bhang
{"title":"Enhancing Skin Regeneration Efficacy of Human Dermal Fibroblasts Using Carboxymethyl Cellulose-Coated Biodegradable Polymer.","authors":"You Bin Lee, Dong-Hyun Lee, Youn Chul Kim, Suk Ho Bhang","doi":"10.1007/s13770-024-00681-x","DOIUrl":"10.1007/s13770-024-00681-x","url":null,"abstract":"<p><strong>Background: </strong>Polylactic acid (PLA) is extensively used in the medical and cosmetic industries for skin regeneration and as a dermal filler due to its biocompatibility and biodegradability. However, the effectiveness of PLA as a cosmetic filler is limited by its slow degradation rate and poor cell attachment properties. Recent studies have focused on enhancing the performance of PLA by combining it with other materials. This study aimed to evaluate the performance of carboxymethyl cellulose (CMC), known for its high biocompatibility, in comparison with the widely used hyaluronic acid (HA).</p><p><strong>Methods: </strong>Two types of PLA-based particles, HA-PLA and CMC-PLA were synthesized by combining PLA with HA and CMC, respectively. After characterizing the particles, we evaluated cell adhesion and viability using human dermal fibroblasts and analyzed gene and protein expression related to cell attachment and angiogenic paracrine factors.</p><p><strong>Results: </strong>The CMC-PLA particles maintained a more uniform size distribution than the HA-PLA particles and exhibited superior cell adhesion properties. Cells attached on the CMC-PLA particles showed enhanced secretion of angiogenic paracrine factors, suggesting a potential improvement in therapeutic efficacy.</p><p><strong>Conclusion: </strong>CMC-PLA particles demonstrated superior cell adhesion and secretion capabilities compared with HA-PLA particles, indicating their potential for application in skin regeneration and tissue recovery. Further research, including in vivo studies, is required to fully explore and validate the therapeutic potential of CMC-PLA particles.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"505-513"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility Assessment of 3D Printing-Based Tubular Tissue Flap in a Porcine Model for Long Segmental Tracheal Reconstruction. 基于3D打印管状组织瓣在猪长段气管重建中的可行性评估
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-05-21 DOI: 10.1007/s13770-025-00718-9
Jeong Hun Park, Nettie E Brown, Sarah Jo Tucker, Johnna S Temenoff, Mark El-Deiry, Hyun-Ji Park, Andrew T Tkaczuk, Scott J Hollister
{"title":"Feasibility Assessment of 3D Printing-Based Tubular Tissue Flap in a Porcine Model for Long Segmental Tracheal Reconstruction.","authors":"Jeong Hun Park, Nettie E Brown, Sarah Jo Tucker, Johnna S Temenoff, Mark El-Deiry, Hyun-Ji Park, Andrew T Tkaczuk, Scott J Hollister","doi":"10.1007/s13770-025-00718-9","DOIUrl":"10.1007/s13770-025-00718-9","url":null,"abstract":"<p><strong>Background: </strong>Despite advances in tissue engineering, current clinical reconstructive options for long segment tracheal defects are limited. In this study, a 3D printing based tubular tissue flap strategy was developed for long segment tracheal reconstruction.</p><p><strong>Method: </strong>A stent-patterned airway scaffold with sufficient radial rigidity and longitudinal bending flexibility was designed and its mechanical behavior was analyzed using finite element analysis (FEA). The stent-patterned airway scaffolds with a removable central core to preserve an internal lumen were created by selective laser sintering (SLS) based 3D printing. The stent-patterned airway scaffold with the central core, filled with poly (ethylene glycol) diacrylate-dithiothreitol (PEGDA-DTT) hydrogel containing erythropoietin (EPO) to enhance vascularization, was then implanted into the latissimus dorsi muscle of a Yucatan minipig.</p><p><strong>Results: </strong>A tubular tissue flap, with controlled luminal layer thickness was successfully created by removing the central core from the retrieved tissue flap containing the airway scaffold after 45 days of implantation in the Yucatan minipig model.</p><p><strong>Conclusion: </strong>The current work validated the potential of the tubular tissue flap based on the 3D printing as a clinically viable tissue engineering strategy for long segment tracheal reconstruction.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"469-479"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144111471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy. 外泌体和外泌体模拟物治疗特应性皮炎。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-06-01 Epub Date: 2025-01-20 DOI: 10.1007/s13770-024-00695-5
Jae Hoon Kim, Ju-El Kim, Seong-Jun Kang, Jeong-Kee Yoon
{"title":"Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy.","authors":"Jae Hoon Kim, Ju-El Kim, Seong-Jun Kang, Jeong-Kee Yoon","doi":"10.1007/s13770-024-00695-5","DOIUrl":"10.1007/s13770-024-00695-5","url":null,"abstract":"<p><strong>Background: </strong>Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options. However, the efficacy of the therapy remains poorly understood. Also, the potential of exosome mimetics as alternatives to exosomes in skin therapy remains underexplored.</p><p><strong>Methods: </strong>Here, we reviewed the pathological features and current therapies of AD. Next, we reviewed the application of exosomes and exosome mimetics in regenerative medicine. Finally, we highlighted the therapeutic effects of exosomes based on their cell source and assessed whether exosome mimetics are viable alternatives.</p><p><strong>Results and conclusion: </strong>Exosome therapy may treat AD due to its skin regenerative properties, and exosome mimetics may offer an equally effective yet more efficient alternative. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"381-396"},"PeriodicalIF":4.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-Generation Strategies for Enamel Repair and Regeneration: Advances in Biomaterials and Translational Challenges. 下一代牙釉质修复和再生策略:生物材料的进展和转化挑战。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-05-10 DOI: 10.1007/s13770-025-00725-w
Eman M Sedek, Ahmed A Holiel
{"title":"Next-Generation Strategies for Enamel Repair and Regeneration: Advances in Biomaterials and Translational Challenges.","authors":"Eman M Sedek, Ahmed A Holiel","doi":"10.1007/s13770-025-00725-w","DOIUrl":"https://doi.org/10.1007/s13770-025-00725-w","url":null,"abstract":"<p><strong>Background: </strong>Enamel regeneration and remineralization are critical for restoring enamel integrity, as natural enamel lacks the ability to regenerate due to the absence of ameloblasts. The increasing prevalence of dental caries and the irreversible nature of enamel damage highlight the need for advanced repair strategies.</p><p><strong>Methods: </strong>This review examines the latest advancements in enamel regeneration and remineralization, focusing on biomaterials, nanotechnology-based approaches, and bioengineering strategies. Google Scholar, Scopus (Elsevier), and PubMed databases were used for the selection of literature. The search included key terms such as \"enamel regeneration,\" \"biomimetic enamel repair,\" \"stem cell-based enamel regeneration,\" \"nanotechnology in enamel repair,\" \"hydroxyapatite enamel remineralization,\" and \"biomaterials for enamel remineralization.\"</p><p><strong>Results: </strong>Various strategies have been explored for enamel remineralization, including self-assembling peptides, dendrimers, hydrogels, and electrospun mats, each demonstrating varying success in laboratory and preclinical studies. While casein-phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) combined with fluoride remains a widely used clinical remineralization agent, integrating CPP-ACP with nanotechnology is an emerging area requiring further research. Enamel bioengineering approaches utilizing stem/progenitor cells offer potential, though challenges remain in achieving clinical translation.</p><p><strong>Conclusion: </strong>Despite advancements, replicating the hierarchical structure and mechanical properties of natural enamel remains challenging. Nanotechnology-driven approaches, bioengineered scaffolds, and interdisciplinary collaboration hold promise for optimizing enamel regeneration techniques. Further research is necessary to enhance clinical applicability and develop scalable, effective treatments for enamel restoration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144052727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信