Tissue engineering and regenerative medicine最新文献

筛选
英文 中文
Mesenchymal Stem Cells Expressing Baculovirus-Engineered Brain-Derived Neurotrophic Factor Improve Peripheral Nerve Regeneration in a Rat Model. 表达杆状病毒工程脑源性神经营养因子的间充质干细胞促进大鼠周围神经再生模型。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-02-17 DOI: 10.1007/s13770-025-00703-2
Won Sun Lee, Soon Jin Choi, Young Ho Shin, Jae Kwang Kim
{"title":"Mesenchymal Stem Cells Expressing Baculovirus-Engineered Brain-Derived Neurotrophic Factor Improve Peripheral Nerve Regeneration in a Rat Model.","authors":"Won Sun Lee, Soon Jin Choi, Young Ho Shin, Jae Kwang Kim","doi":"10.1007/s13770-025-00703-2","DOIUrl":"10.1007/s13770-025-00703-2","url":null,"abstract":"<p><strong>Background: </strong>Peripheral nerve injuries are a major clinical challenge because of their complex nature and limited regenerative capacity. This study aimed to improve peripheral nerve regeneration using Wharton's jelly mesenchymal stem cells (WJ-MSCs) engineered to express brain-derived neurotrophic factor (BDNF) via a baculovirus (BV) vector. The cells were evaluated for efficacy when seeded into acellular nerve grafts (ANGs) in a rat sciatic nerve defect model.</p><p><strong>Methods: </strong>WJ-MSCs were transfected with recombinant BV to upregulate BDNF expression. Conditioned medium (CM) from these cells was utilized to treat Schwann cells (SCs), and the impact on myelination-related markers, including KROX20, myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β), and the activation of the mammalian target of rapamycin (mTOR)/ protein kinase B (AKT)/p38 signaling pathways were evaluated. In vivo, BDNF-expressing WJ-MSCs were seeded into ANGs and implanted into a rat sciatic nerve defect model. Functional recovery was evaluated via video gait analysis, isometric tetanic force measurement, muscle weight evaluation, ankle contracture angle measurement, and histological analysis using toluidine blue staining.</p><p><strong>Results: </strong>BDNF expression was significantly upregulated in WJ-MSCs post-transfection. BDNF-MSC CM substantially promoted the expression of myelination markers in SCs and activated the mTOR/AKT/p38 signaling pathway. In the rat model, seeding of ANGs with BDNF-expressing WJ-MSCs resulted in improved functional outcomes, including enhanced toe-off angles, increased isometric tetanic force, greater muscle weight recovery, and a higher total number of myelinated axons compared with controls.</p><p><strong>Conclusion: </strong>WJ-MSCs engineered to express BDNF significantly enhanced peripheral nerve regeneration when utilized in conjunction with ANGs. These findings indicate BDNF-expressing WJ-MSCs are a promising therapeutic approach for treating peripheral nerve injuries.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"351-362"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Highly Functional Spheroid of Endocrine Cells Based on Thermosensitive Glycol Chitosan. 热敏乙二醇壳聚糖制备高功能内分泌细胞球体。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-02-25 DOI: 10.1007/s13770-025-00708-x
Seonmi Jang, Young-Woo Park, Kang Moo Huh, Dong Yun Lee
{"title":"Preparation of Highly Functional Spheroid of Endocrine Cells Based on Thermosensitive Glycol Chitosan.","authors":"Seonmi Jang, Young-Woo Park, Kang Moo Huh, Dong Yun Lee","doi":"10.1007/s13770-025-00708-x","DOIUrl":"10.1007/s13770-025-00708-x","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic islet transplantation holds great potential as a therapeutic approach for treating type 1 diabetes mellitus (T1D). However, large islets suffer from hypoxia due to the limited diffusion distance of oxygen, leading to cell loss. Therefore, smaller spheroids are needed for better transplantation outcomes. This study aims to develop a method for forming highly functional islet spheroids using glycol chitosan (GC) derivatives, such as N-acetylated glycol chitosan (AGC) and N-hexanoyl glycol chitosan (HGC).</p><p><strong>Methods: </strong>Thermogelling polymers were produced by performing N-acylation of GC using the correspondingly carboxylic anhydrides. Islet spheroids were formed using a dual application with AGC-coated plates and HGC gelation. The AGC solution was applied to the plate for coating and evenly distributed using a 1 mL syringe. Then, the HGC encapsulated with islet single cells was cultured on top of it. Spheroid viability and functionality were evaluated using CCK-8 assay and glucose-stimulated insulin secretion assay.</p><p><strong>Results: </strong>The aqueous solutions of AGC (4%, w/v) and HGC (36% hexanoylation) (2%, w/v) demonstrated a sol-gel transition temperature around 37 °C, suitable for the physiological environment. These polymers also showed no cytotoxicity to intact islets. Islet single cells were cultured on HGC gels with varying degrees of hexanoylation (DH) values, where higher DH values led to smaller and more uniform spheroids. The resulting spheroids formed on AGC-coated plates and HGC36 gelation were smaller and more uniform than those formed on untreated plates. These spheroids exhibited significantly improved glucose responsiveness, with superior insulin secretion.</p><p><strong>Conclusion: </strong>The optimized method using AGC and HGC offers a more efficient way to produce smaller, uniform, and functional spheroids.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"309-325"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases. 组织血管支架和超临界二氧化碳技术在心血管疾病中的进展与挑战。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-03-03 DOI: 10.1007/s13770-025-00710-3
Horng-Ta Tseng, Yi-Wen Lin, Shih-Ying Sung, Yi-Ting Tsai, Chen-Wei Liu, Po-Shun Hsu, Chien-Sung Tsai, Feng-Yen Lin
{"title":"Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases.","authors":"Horng-Ta Tseng, Yi-Wen Lin, Shih-Ying Sung, Yi-Ting Tsai, Chen-Wei Liu, Po-Shun Hsu, Chien-Sung Tsai, Feng-Yen Lin","doi":"10.1007/s13770-025-00710-3","DOIUrl":"10.1007/s13770-025-00710-3","url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis often leads to ischemic heart disease and peripheral artery disease. Traditional revascularization technique such as bypass grafting using autologous vessels are commonly employed. However, limitations arise when patients lack suitable grafts due to underlying diseases or previous surgeries, prompting the need to substitute vessel grafts. Due to the high biocompatibility of decellularized products (grafts or scaffolds) prepared using supercritical carbon dioxide (ScCO<sub>2</sub>), it has been widely applied in decellularization-related technologies in recent years. Therefore, this review article will comprehensively discuss the current developments in tissue vascular scaffolds applied to the treatment of cardiovascular diseases, with a particular focus on the application of supercritical carbon dioxide technology in this field and the challenges it faces.</p><p><strong>Method: </strong>This review was compiled by searching relevant references on PubMed database (before June 2024) based on selected key words and specific terms.</p><p><strong>Results: </strong>ScCO<sub>2</sub> is an effective and eco-friendly extraction agent widely used in industries like food, pharmaceuticals, and cosmetics. It has been applied in decellularization processes to obtain extracellular matrices (ECMs) from tissues. ScCO<sub>2</sub> technology has emerged as a promising method in cardiovascular disease treatment, particularly for developing tissue vascular scaffolds. ScCO<sub>2</sub> effectively removes cellular components while preserving the ECM, ensuring high biocompatibility and reduced immune response. It has been applied to decellularize tissues like heart valves and arteries, creating scaffolds that mimic natural ECM to support cell proliferation and tissue regeneration. Despite challenges such as solubility limitations and cost, ScCO<sub>2</sub> offers advantages like low toxicity and ease of use, making it a valuable tool in advancing regenerative medicine for cardiovascular applications.</p><p><strong>Conclusion: </strong>ScCO<sub>2</sub> has the advantages of low cellular toxicity, cost-effectiveness, and ease of manipulation. These characteristics have the potential to lead to significant progress in cardiovascular research on tissue regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"273-284"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model. 人类诱导多能干细胞衍生的神经祖细胞替代疗法在血管性痴呆动物模型中的疗效。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.1007/s13770-025-00706-z
Jang Hun Kim, Ho-Young Kang, Jihun Lee, Jong-Hoon Kim, Dongho Geum, Dong-Hyuk Park
{"title":"Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model.","authors":"Jang Hun Kim, Ho-Young Kang, Jihun Lee, Jong-Hoon Kim, Dongho Geum, Dong-Hyuk Park","doi":"10.1007/s13770-025-00706-z","DOIUrl":"10.1007/s13770-025-00706-z","url":null,"abstract":"<p><strong>Background: </strong>Cell replacement therapy is the only treatment that restores or repairs the function of impaired tissues in neurodegenerative diseases, including vascular dementia (VaD); however, current VaD treatments focus on slowing or mitigating the underlying small vessel disease progression. We aimed to verify the improvement in neurocognition after administering human-induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from in a VaD animal model.</p><p><strong>Methods: </strong>After anesthesia, 10-12-week-old male C5BL/6 mice underwent sham or bilateral carotid artery stenosis (BCAS) surgeries. For BCAS, 0.18-mm micro-coils were wound around the bilateral common carotid arteries to induce chronic vascular insufficiency in the global brain. One day after surgery, the mice were administered phosphate buffer solution or NPC from hiPSCs via the tail vein for 15 d, and divided into sham (n = 6), VEH (n = 6), and NPC (n = 7) groups. Three months after the surgery, neurobehavioral tests including the Y-maze test (YMT), passive avoidance test (PAT), and novel object recognition test (NORT) were performed. Finally, mice brains were sectioned for evaluating microglia (Iba-1), astrocyte (GFAP) activation, and myelin (MBP) degeneration through immunohistochemistry (IHC).</p><p><strong>Results: </strong>PAT latency (p = 0.01) and discrimination index in the NORT (p = 0.043) increased considerably in the NPC group than in the VEH group. However, alterations in YMT were not considerably higher in the NPC group than in the VEH group (p = 0.65). IHC tests revealed that the GFAP- and IBA-1-positive cell number was remarkably lower in the NPC group than in the VEH group (p < 0.05). Moreover, MBP density was higher in the NPC group.</p><p><strong>Conclusion: </strong>hiPSC-derived NPCs have therapeutic potential in cerebral hypoperfusion VaD mice; it improves the working memory of VaD animals by diminishing inflammatory reactions and protecting them from demyelination.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"339-349"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intranasal Administration of Human Neural Crest-Derived Nasal Turbinate Stem Cells Attenuates Microglia Activity in Mild Head Trauma Models. 鼻内注射人神经嵴来源的鼻甲干细胞可减弱轻度头部创伤模型中的小胶质细胞活性。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-03-05 DOI: 10.1007/s13770-025-00702-3
Jung Eun Lee, Jung Yeon Lim, Seung Yoon Song, Sun Hwa Park, Jai Ho Choi, Hyun Kook Lim, Sung Won Kim, Seung Ho Yang
{"title":"Intranasal Administration of Human Neural Crest-Derived Nasal Turbinate Stem Cells Attenuates Microglia Activity in Mild Head Trauma Models.","authors":"Jung Eun Lee, Jung Yeon Lim, Seung Yoon Song, Sun Hwa Park, Jai Ho Choi, Hyun Kook Lim, Sung Won Kim, Seung Ho Yang","doi":"10.1007/s13770-025-00702-3","DOIUrl":"10.1007/s13770-025-00702-3","url":null,"abstract":"<p><strong>Background: </strong>Mild head trauma often leads to long-term cognitive and neurological deficits. PLX3397, an inhibitor of colony-stimulating factor 1 receptor (CSF1R), offers promise as a therapeutic agent for traumatic brain injury (TBI) by targeting neuro-inflammation. Stem cell-based approaches are widely studied for neurological disorders. The objective of this study was to investigate therapeutic effect of intranasal administration of human neural crest-derived nasal turbinate stem cells (hNTSCs) on mild TBI in comparison with that of PLX3397.</p><p><strong>Methods: </strong>We developed a model of mice with repetitive and mild TBI following a weight-drop once a day for 5 days. PLX3397 (50 mg/kg, p. o.) was administered for 21 days. Intranasal administration of hNTSCs (1 × 10<sup>6</sup>) was performed once.</p><p><strong>Results: </strong>Iba1 + and GFAP + cells were increased in the cortex and hippocampus of TBI models. Iba1 + cells and GFAP + cells were remarkably decreased in PLX3397 or hNTSC-treated TBI models. Administration of PLX3397 attenuated the decrease in neurobehavioral activity. Similar effects were observed in a TBI model with a single dose of hNTSC.</p><p><strong>Conclusion: </strong>Intranasal administration of hNTSCs had a microglia-depleting effect. Administered hNTSCs were found around the cortex and hippocampus of TBI brains. This investigation may provide a promising path for therapeutic initiatives for repetitive and mild TBI.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"327-337"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves. 不同径向体外冲击波对骨腔隙系统传质的影响。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-02-20 DOI: 10.1007/s13770-025-00707-y
Xinlei Song, Pujun Hao, Lilan Gao, Xuejin Li, Chunqiu Zhang
{"title":"Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves.","authors":"Xinlei Song, Pujun Hao, Lilan Gao, Xuejin Li, Chunqiu Zhang","doi":"10.1007/s13770-025-00707-y","DOIUrl":"10.1007/s13770-025-00707-y","url":null,"abstract":"<p><strong>Background: </strong>The bone lacunar-canalicular system (LCS) is an important microscopic infrastructure for signaling and solute transport in bone tissue, which guarantees the normal physiological processes of bone tissue, and there is a direct relationship between osteoporosis and intrabody mass transfer; however, the mass transfer pattern of the LCS has not yet been clarified under different intensities of in extracorporeal shock waves. The present study aims to assess the effect of extracorporeal shock waves on mass transfer in LCS.</p><p><strong>Methods: </strong>Sodium fluorescein tracer was taken as the transport substance, and the fluorescence intensities of osteocytes at lacuna in bovine cortical bone were used to indicate the mass transfer effect. The free diffusion and different extracorporeal shock waves were performed in LCS experiments and the fluorescence intensities of the superficial, shallow, middle, and deep layers of osteocytes, which were arranged in a proximity-to-distant order away from the Haversian canal, were detected by laser scanning confocal microscopy.</p><p><strong>Results: </strong>The results showed that, under different shock waves, the fluorescence intensities of superficial lacunae were the highest in an osteon, followed by shallow and middle layers, and the fluorescence intensities of deep lacunae furthest from the Haversian canal were the lowest, with a decreasing trend and a decreased range of 44.75-97.11%. Relative to free diffusion, the fluorescence intensities of the lacunae in each layer increased by 33.16%, 20.56%, 16.11%, and 26.64% in the superficial, shallow, middle, and deep layers of osteocytes, respectively, under the effect of the extracorporeal shock waves at 1 bar; the fluorescence intensities of the middle layer increased by 100.03% when the intensity was 5 bar, and average fluorescence intensities increased the most with an incremental value of 81.34% in all different shock waves; the fluorescence intensities of the lacunae of each layer was enhanced with a range of 110.93-161.03% by 8 bar.</p><p><strong>Conclusion: </strong>Extracorporeal shock waves promoted tracer mass transfer within the LCS, and the higher the shock wave magnitudes, the larger the mass transfer in LCS. The transport of solute molecules, nutrients, and signaling molecules within the LCS was facilitated by the extracorporeal shock waves, which may help to address bone diseases such as osteoporosis from the direction of mass transfer in LCS.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"297-308"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tonsil-Derived Mesenchymal Stem Cell-Derived Small Extracellular Vesicles (sEVs) Restore Myo-Inositol Production in LPS-Treated Skeletal Muscle. 扁桃体来源的间充质干细胞来源的细胞外小泡(sEVs)恢复脂多糖处理的骨骼肌肌醇生产。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-02-25 DOI: 10.1007/s13770-025-00709-w
Kyung-Ah Cho, Yu-Hee Kim, So-Youn Woo, Kyung-Ha Ryu
{"title":"Tonsil-Derived Mesenchymal Stem Cell-Derived Small Extracellular Vesicles (sEVs) Restore Myo-Inositol Production in LPS-Treated Skeletal Muscle.","authors":"Kyung-Ah Cho, Yu-Hee Kim, So-Youn Woo, Kyung-Ha Ryu","doi":"10.1007/s13770-025-00709-w","DOIUrl":"10.1007/s13770-025-00709-w","url":null,"abstract":"<p><strong>Background: </strong>Systemic inflammation, often induced by elevated circulating lipopolysaccharide (LPS) levels, is a common consequence of intestinal epithelial barrier damage and microbial translocation. This condition is particularly prevalent in menopausal women, who are at increased risk for chronic inflammation and metabolic syndrome due to physiological changes during menopause. Myo-inositol has been shown to improve metabolic profiles in menopausal women with metabolic syndrome. In this study, we investigated whether small extracellular vesicles (sEVs) from human palatine tonsil-derived mesenchymal stem cells (T-MSCs) can restore circulating myo-inositol levels and promote myo-inositol synthesis in skeletal muscle under repeated LPS exposure, mimicking the intestinal leakage seen in menopausal women.</p><p><strong>Methods: </strong>Over 2 weeks period, LPS was repeatedly administered to mice, along with a group that also received T-MSC-derived sEVs. After 15 days, the expression of proteins involved in inositol synthesis in skeletal muscle, and serum inositol levels were measured. Additionally, intracellular inositol expression was compared in LPS-treated skeletal muscle cells with and without T-MSC sEVs treatment in vitro. Lastly, the protein and microRNA composition of T-MSC sEVs was analyzed.</p><p><strong>Results: </strong>Our results demonstrated that T-MSC-derived sEVs significantly increased serum myo-inositol levels and enhanced the expression of myo-inositol synthesis proteins in mice exposed to LPS. Similarly, LPS-treated myotubes supplemented with T-MSC sEVs exhibited restored myo-inositol expression. Moreover, T-MSC sEVs were found to contain high levels of muscle-related proteins.</p><p><strong>Conclusion: </strong>These findings suggest that T-MSC sEVs may serve as a promising therapeutic strategy for mitigating the effects of intestinal leakage and chronic inflammation in menopausal women. By improving skeletal muscle mass and maintaining myo-inositol levels, T-MSC sEVs offer potential for addressing metabolic disturbances associated with menopause.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"285-295"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Bi-layer Silk Fibroin Grafts for Onlay Urethroplasty in a Female Porcine Model of Long Urethral Strictures. 双层丝素蛋白移植用于长尿道狭窄母猪模型膀胱尿道成形术的评价。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-04-01 Epub Date: 2025-03-11 DOI: 10.1007/s13770-025-00714-z
Gokhan Gundogdu, Travis Nguyen, David W Barham, Seyed Sharifi, Charlotte Morgan, Madison Rivero, Nuriel Sussman, Shubhang V Rajpara, Joel Gelman, Joshua R Mauney
{"title":"Evaluation of Bi-layer Silk Fibroin Grafts for Onlay Urethroplasty in a Female Porcine Model of Long Urethral Strictures.","authors":"Gokhan Gundogdu, Travis Nguyen, David W Barham, Seyed Sharifi, Charlotte Morgan, Madison Rivero, Nuriel Sussman, Shubhang V Rajpara, Joel Gelman, Joshua R Mauney","doi":"10.1007/s13770-025-00714-z","DOIUrl":"10.1007/s13770-025-00714-z","url":null,"abstract":"<p><strong>Background: </strong>Buccal mucosa urethroplasty represents the primary strategy for reconstruction of long urethral strictures (US). However, significant complications including stricture recurrence and donor site morbidity currently hamper this approach. The goal of this study was to determine the efficacy of acellular, bi-layer silk fibroin (BLSF) biomaterials to serve as superior alternatives to buccal mucosal (BM) grafts for repair of 4 cm long US in female swine.</p><p><strong>Methods: </strong>Urethral mucosal damage was induced over 4-5 cm long segments via electrocoagulation in adult female swine (N = 10) to promote US over the course of 2-4 weeks. Onlay urethroplasty with BLSF scaffolds or autologous BM grafts (N = 5 per group, ~ 4 cm<sup>2</sup>) was subsequently performed and animals were maintained for 3 months. Outcome analyses included urethroscopy, retrograde urethrography (RUG), and histological and immunohistochemical (IHC) analyses. Non operated urethral segments served as internal controls (N = 10).</p><p><strong>Results: </strong>All swine survived the study with no severe complications and exhibited US formation following electrocoagulation with a 43-57% reduction in baseline calibers. At 3 months post-op, imaging modalities revealed both graft cohorts promoted > 80% restoration of native urethral calibers. Histological and IHC evaluations showed BLSF grafts supported the formation of innervated, vascularized urethral-like neotissues with α-smooth muscle actin + and SM22α + smooth muscle bundles as well as pan-cytokeratin + epithelia reminiscent of controls. In contrast, BM grafts primarily retained native oral tissue morphology after urethral transposition exhibiting cytokeratin 1 + stratified, squamous epithelia and scant muscle formation.</p><p><strong>Conclusions: </strong>BLSF matrices can promote functional restoration of long US via regeneration of native urethral tissues.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"363-375"},"PeriodicalIF":4.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. 人诱导多能干细胞衍生心脏组织收缩同步的快速视频分析。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI: 10.1007/s13770-024-00688-4
Yuqing Jiang, Mingcheng Xue, Lu Ou, Huiquan Wu, Jianhui Yang, Wangzihan Zhang, Zhuomin Zhou, Qiang Gao, Bin Lin, Weiwei Kong, Songyue Chen, Daoheng Sun
{"title":"Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.","authors":"Yuqing Jiang, Mingcheng Xue, Lu Ou, Huiquan Wu, Jianhui Yang, Wangzihan Zhang, Zhuomin Zhou, Qiang Gao, Bin Lin, Weiwei Kong, Songyue Chen, Daoheng Sun","doi":"10.1007/s13770-024-00688-4","DOIUrl":"10.1007/s13770-024-00688-4","url":null,"abstract":"<p><strong>Background: </strong>The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.</p><p><strong>Methods: </strong>We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.</p><p><strong>Results: </strong>Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the Lucas-Kanade (LK) optical flow method, and provided better stability and accuracy in the results.</p><p><strong>Conclusion: </strong>This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"211-224"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application. 骨髓抽吸浓缩液治疗骨关节炎的临床应用综述。
IF 4.4 4区 医学
Tissue engineering and regenerative medicine Pub Date : 2025-02-01 Epub Date: 2025-01-22 DOI: 10.1007/s13770-024-00693-7
Gun-Il Im
{"title":"Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application.","authors":"Gun-Il Im","doi":"10.1007/s13770-024-00693-7","DOIUrl":"10.1007/s13770-024-00693-7","url":null,"abstract":"<p><strong>Background: </strong>Bone marrow aspiration concentrate (BMAC) has gained acceptance as a safe orthobiologic for treating osteoarthritis (OA), despite lacking robust supporting evidence. Although several publications have documented the use of BMAC in OA, evidence confirming its unequivocal efficacy remains limited.</p><p><strong>Methods: </strong>This review aims to summarize the current clinical evidence regarding BMAC as a therapeutic for OA, while also presenting the author's perspective. Sixteen studies were reviewed, including ten randomized clinical trials (RCTs) and six cohort studies.</p><p><strong>Results: </strong>From the review of existing literature, BMAC injections do not appear to significantly improve pain and function compared to conventional therapies such as hyaluronic acid and corticosteroids, although some studies report a longer duration of effectiveness. Furthermore, the evidence for structural improvement, which was the original rationale for cell therapy, is seldom reported.</p><p><strong>Conclusion: </strong>In light of these findings, it is suggested that high-quality data from a large patient cohort is needed to determine the role of BMAC injections in OA treatment and address reimbursement issues. From the author's perspective, the introduction of a national registry system that provides valuable information on the cost-effectiveness of various orthopedic procedures may offer a solution.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"159-166"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信