Tim Ruhl, Sofija Benic, Melissa Plum, Bong-Sung Kim, Justus P Beier, Benedikt Schaefer
{"title":"∆<sup>9</sup>-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.","authors":"Tim Ruhl, Sofija Benic, Melissa Plum, Bong-Sung Kim, Justus P Beier, Benedikt Schaefer","doi":"10.1007/s13770-024-00692-8","DOIUrl":"10.1007/s13770-024-00692-8","url":null,"abstract":"<p><strong>Background: </strong>Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆<sup>9</sup>-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.</p><p><strong>Methods: </strong>Human ASCs were exposed to increasing concentrations of THC. Resazurin conversion was applied to investigate the effect on metabolic activity, cell number was assessed by crystal violet staining, tri-linear differentiation was evaluated by specific colorimetric approaches, and the release of growth factors was analyzed by ELISA. Two groups of mice were treated daily either with a low dose of THC (3 mg/kg) or a vehicle solution. After 3 weeks, adipose tissue was obtained from excised fat deposits, homogenized and tested for growth factor contents.</p><p><strong>Results: </strong>THC decreased ASC proliferation but increased metabolic activity as well as adipogenic and chondrogenic differentiation. A low concentration of THC (1 µM) enhanced the growth factor release by ASCs. The concentration of these cytokines was also increased in adipose tissue of mice treated with THC.</p><p><strong>Conlusion: </strong>Our results indicate that chronic activation of the endocannabinoid system promoted differentiation and growth factor release of ASCs, which could be of specific value for enhancing the regenerative potential of adipose tissue.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"225-235"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinsung Ahn, Bowon Kim, Alvin Bacero Bello, James J Moon, Yoshie Arai, Soo-Hong Lee
{"title":"Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration.","authors":"Jinsung Ahn, Bowon Kim, Alvin Bacero Bello, James J Moon, Yoshie Arai, Soo-Hong Lee","doi":"10.1007/s13770-024-00690-w","DOIUrl":"10.1007/s13770-024-00690-w","url":null,"abstract":"<p><strong>Background: </strong>Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.</p><p><strong>Methods: </strong>This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.</p><p><strong>Results and conclusion: </strong>This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"167-180"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduction of Low-Density Lipoprotein Cholesterol by Mesenchymal Stem Cells in a Mouse Model of Exogenous Cushing's Syndrome.","authors":"Yu-Hee Kim, Seonghee Jeong, Kyung-Ah Cho, So-Youn Woo, Seung-Ho Han, Kyung-Ha Ryu","doi":"10.1007/s13770-024-00697-3","DOIUrl":"10.1007/s13770-024-00697-3","url":null,"abstract":"<p><strong>Background: </strong>Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.</p><p><strong>Methods: </strong>Exogenous Cushing's syndrome model mice was generated by corticosterone administration in the drinking water for 5 weeks, and T-MSCs were injected intraperitoneally twice during the third week. Serum lipid profiles were measured using a chemistry analyzer. HepG2 cells were treated with dexamethasone and co-cultured with T-MSCs. Expression levels of genes involved in cholesterol metabolism were examined using real-time PCR. Low-density lipoprotein receptor (LDLR) protein levels were determined using western blotting and immunohistochemistry. Liver RNA extracted from the CORT and CORT + MSC mouse groups was used for transcriptome sequencing analysis and protein-protein interaction analysis.</p><p><strong>Results: </strong>Weight reduction and improvements in dyslipidemia by T-MSC administration were observed only in female mice. T-MSCs reduce circulating LDL cholesterol levels by downregulating liver X receptor α (LXRα) and inducible degrader of LDLR (IDOL) expression, thereby stabilizing LDLRs in the liver. Transcriptome analysis of liver tissue revealed pathways that are regulated by T-MSCs administration.</p><p><strong>Conclusion: </strong>Administration of MSCs to female mice receiving chronic corticosterone treatment reduced the circulating LDL cholesterol level by downregulating the LXRα-IDOL axis in hepatocytes. These results suggest that T-MSCs may offer a novel therapeutic strategy for managing exogenous Cushing's syndrome by regulating cholesterol metabolism.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"237-248"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biofabricated 3D Intestinal Models as an Alternative to Animal-Based Approaches for Drug Toxicity Assays.","authors":"Larissa Bueno Tofani, Thayná Mendonça Avelino, Rafael Júnior de Azevedo, Giovanna Blazutti Elias, Melissa Dibbernn Ganzerla, Maiara Ferreira Terra, Vanessa Kiraly Thomaz Rodrigues, Renata Santos Rabelo, Samarah Vargas Harb, Ana Carolina Migliorini Figueira","doi":"10.1007/s13770-024-00694-6","DOIUrl":"10.1007/s13770-024-00694-6","url":null,"abstract":"<p><strong>Background: </strong>The main challenge in new drug development is accurately predicting the human response in preclinical models.</p><p><strong>Methods: </strong>In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.</p><p><strong>Results: </strong>All models successfully replicated the structural and functional aspects of the intestinal barrier. The 3D bioprinted intestinal model, however, demonstrated superior epithelial barrier integrity enhanced tight junction formation, microvilli development, and increased mucus production. When subjected to Ibuprofen, the 3D bioprinted model provided a more predictive response, underscoring its potential as a reliable in vitro tool for drug toxicity testing.</p><p><strong>Conclusion: </strong>Our 3D bioprinted intestinal model presents a robust and predictive platform for drug toxicity assessments, significantly reducing the need for animal testing. This model not only aligns with ethical testing protocols but also offers enhanced accuracy in predicting human responses, thereby advancing the field of drug development.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"181-194"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeong-Kui Ku, Jung-Hoon Lim, Jung-Ah Lim, In-Woong Um, Yu-Mi Kim, Pil-Young Yun
{"title":"Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery.","authors":"Jeong-Kui Ku, Jung-Hoon Lim, Jung-Ah Lim, In-Woong Um, Yu-Mi Kim, Pil-Young Yun","doi":"10.1007/s13770-024-00689-3","DOIUrl":"10.1007/s13770-024-00689-3","url":null,"abstract":"<p><strong>Background: </strong>Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.</p><p><strong>Methods: </strong>Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.</p><p><strong>Results: </strong>All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.</p><p><strong>Conclusion: </strong>DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"261-271"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.","authors":"Seung Ju Seo, Yoonhee Jin","doi":"10.1007/s13770-024-00696-4","DOIUrl":"10.1007/s13770-024-00696-4","url":null,"abstract":"<p><strong>Background: </strong>Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.</p><p><strong>Methods: </strong>Primary mouse embryonic fibroblasts (pMEFs) were reprogrammed into CiCMs and subjected to a glucose-depleted, lactate-supplemented medium for 4 days. Afterward, cell viability was analyzed, and cardiomyocyte efficiency was assessed through the expression of cardiac-specific markers. Additionally, electrophysiological function was evaluated by examining drug-induced responses.</p><p><strong>Results: </strong>The lactate treatment led to a significant decrease in the viability of non-cardiomyocytes (pMEF-LAC), while CiCMs (CiCM-LAC) showed minimal cell death. Specifically, the expression of all cardiac-related markers was increased in CiCM-LAC. Metabolically purified CiCMs exhibited enhanced contractile force and increased contraction frequency compared to non-purified CiCMs, as well as an elevated responsiveness to drugs.</p><p><strong>Conclusion: </strong>This study demonstrates that lactate-based metabolic selection is an effective and practical approach for enriching CiCMs, offering a cost-effective alternative to other purification methods. The application of this strategy could potentially broaden the accessibility and utility of reprogrammed cardiomyocytes in cardiac regeneration and therapeutic development.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"249-260"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.","authors":"Shen Chen, Chao Xie, Xiaoxi Long, Xianwei Wang, Xudong Li, Peng Liu, Jiabin Liu, Zuyong Wang","doi":"10.1007/s13770-024-00691-9","DOIUrl":"10.1007/s13770-024-00691-9","url":null,"abstract":"<p><strong>Background: </strong>Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.</p><p><strong>Methods: </strong>A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.</p><p><strong>Results: </strong>The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.</p><p><strong>Conclusion: </strong>This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"195-210"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Han, Jorine G F Sanders, Lea Andrée, Bart A J A van Oirschot, Adelina S Plachokova, Jeroen J J P van den Beucken, Sander C G Leeuwenburgh, Fang Yang
{"title":"Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants.","authors":"Jing Han, Jorine G F Sanders, Lea Andrée, Bart A J A van Oirschot, Adelina S Plachokova, Jeroen J J P van den Beucken, Sander C G Leeuwenburgh, Fang Yang","doi":"10.1007/s13770-024-00680-y","DOIUrl":"10.1007/s13770-024-00680-y","url":null,"abstract":"<p><strong>Background: </strong>Soft tissue integration (STI) around dental implant abutments is a prerequisite to prevent bacterial invasion and achieve successful dental implant rehabilitation. However, peri-implant STI is a major challenge after dental abutment placement due to alterations in the immune microenvironment upon surgical dental implant installation.</p><p><strong>Methods: </strong>Based on known immunomodulatory effects of zinc, we herein deposited zinc/chitosan/gelatin (Zn/CS/Gel) coatings onto titanium substrates to study their effect on macrophages. First, we exposed macrophages to cell culture media containing different zinc ion (Zn<sup>2+</sup>) concentrations. Next, we explored the immunomodulatory effect of Zn/CS/Gel coatings prepared via facile electrophoretic deposition (EPD).</p><p><strong>Results: </strong>We found that Zn<sup>2+</sup> effectively altered the secretome by reducing the secretion of pro-inflammatory and enhancing pro-regenerative cytokine secretion, particularly at a Zn<sup>2+</sup> supplementation of approximately 37.5 μM. Zn/CS/Gel coatings released Zn<sup>2+</sup> in a concentration range which effectively stimulated pro-regenerative macrophage polarization as demonstrated by M2 macrophage polarization. Additionally, the impact of these Zn<sup>2+</sup>-exposed macrophages on gingival fibroblasts incubated in conditioned medium showed stimulated adhesion, proliferation, and collagen secretion.</p><p><strong>Conclusion: </strong>Our promising results suggest that controlled release of Zn<sup>2+</sup> from Zn/CS/Gel coatings could be applied to immunomodulate peri-implant STI, and to enhance dental implant survival.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"57-75"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramada R Khaswaneh, Ejlal Abu-El-Rub, Ayman Alzu'bi, Fatimah A Almahasneh, Rawan A Almazari, Heba F Ai-Jariri, Raed M Al-Zoubi
{"title":"Hypoxic Stress Induces Complement-Mediated Lysis of Mesenchymal Stem Cells by Downregulating Factor H and CD59.","authors":"Ramada R Khaswaneh, Ejlal Abu-El-Rub, Ayman Alzu'bi, Fatimah A Almahasneh, Rawan A Almazari, Heba F Ai-Jariri, Raed M Al-Zoubi","doi":"10.1007/s13770-024-00678-6","DOIUrl":"10.1007/s13770-024-00678-6","url":null,"abstract":"<p><strong>Background: </strong>Factor H and membrane inhibitor of reactive lysis (CD59) are key regulators of complement activation. Mesenchymal stem cells (MSCs) secrete Factor H and express CD59 to protect themselves from complement-mediated damage. Severe hypoxia found to decrease the survival chances of MSCs after transplantation; however, little is known about the impact of severe hypoxia on modulating the complement system activity and its effect on MSCs survival. Our study seeks to explore the effect of severe hypoxia on modulating the complement cascade in MSCs.</p><p><strong>Methods: </strong>Human adipose tissue-derived MSCs (hAD-MSCs) were cultured under severe hypoxia using 400 μM Cobalt Chloride (CoCl2) for 48 h. The protein expressions of survival marker; Phosphoinositide 3-kinases (PI3K), and pro-apoptotic marker; Caspase-3 were assessed using western blotting. The level of complement system related factors; Factor H, CD59, C3b, iC3b, C5b, C9, and the complement membrane attack complex (MAC) were analyzed using Elisa assays, western blotting, and immunocytochemistry.</p><p><strong>Results: </strong>Our results showed for the first time that severe hypoxia can significantly impair Factor H secretion and CD59 expression in MSCs. This has been associated with upregulation of MAC complex and increased level of cell lysis and apoptosis marked by downregulation of PI3K and upregulation of Annexin v and Caspase-3.</p><p><strong>Conclusion: </strong>The loss of Factor H and CD59 in hypoxic MSCs can initiate their lysis and apoptosis mediated by activating MAC complex. Preserving the level of Factor H and CD59 in MSCs has significant clinical implication to increase their retention rate in hypoxic conditions and prolong their survival.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"105-112"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying Circ-Tulp4 Attenuate Diabetes Mellitus with Nonalcoholic Fatty Liver Disease by Inhibiting Cell Pyroptosis through the HNRNPC/ABHD6 Axis.","authors":"Jing-Jing Han, Jing Li, Dong-Hui Huang","doi":"10.1007/s13770-024-00675-9","DOIUrl":"10.1007/s13770-024-00675-9","url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus with nonalcoholic fatty liver disease (DM-NAFLD) represents a complex metabolic syndrome with significant clinical challenges. This study explores the therapeutic potential and underlying mechanisms of umbilical cord-derived mesenchymal stem cells (UCMSCs)-derived extracellular vesicles (EVs) in DM-NAFLD.</p><p><strong>Methods: </strong>UCMSCs-EVs were isolated and characterized. DM-NAFLD mouse model was developed through high-energy diet and streptozotocin injection. Additionally, primary mouse hepatocytes were exposed to high glucose to simulate cellular conditions. Hepatic tissue damage, body weight changes, lipid levels, glucose and insulin homeostasis, and hepatic lipid accumulation were evaluated. The interaction between UCMSCs-EVs and hepatocytes was assessed, focusing on the localization and function of circ-Tulp4. The study also investigated the expression of circularRNA TUB-like protein 4 (circ-Tulp4), heterogeneous nuclear ribonucleoprotein C (HNRNPC), abhydrolase domain containing 6 (ABHD6), cleaved Caspase-1, NLR family pyrin domain containing 3 (NLRP3) and cleaved N-terminal gasdermin D (GSDMD-N). The binding of circ-Tulp4 to lysine demethylase 6B (KDM6B) and the subsequent epigenetic regulation of ABHD6 by H3K27me3 were analyzed.</p><p><strong>Results: </strong>Circ-Tulp4 was reduced, while HNRNPC and ABHD6 were elevated in DM-NAFLD models. UCMSCs-EVs attenuated hepatic steatosis and inhibited the NLRP3/cleaved Caspase-1/GSDMD-N pathway. EVs delivered circ-Tulp4 into hepatocytes, thereby restoring circ-Tulp4 expression. Elevated circ-Tulp4 enhanced the recruitment of H3K27me3 to the HNRNPC promoter through interaction with KDM6B, thus suppressing HNRNPC and ABHD6. Overexpression of HNRNPC or ABHD6 counteracted the protective effects of UCMSCs-EVs, exacerbating pyroptosis and hepatic steatosis in DM-NAFLD.</p><p><strong>Conclusion: </strong>UCMSCs-EVs deliver circ-Tulp4 into hepatocytes, where circ-Tulp4 inhibits the HNRNPC/ABHD6 axis, thereby reducing pyroptosis and alleviating DM-NAFLD. These findings provide a novel therapeutic avenue for targeting DM-NAFLD through modulation of cell pyroptosis.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"23-41"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}