Tae-Hyun Heo, Bon Kang Gu, Kyungeun Ohk, Jeong-Kee Yoon, Young Hoon Son, Heung Jae Chun, Dae-Hyeok Yang, Gun-Jae Jeong
{"title":"多核苷酸和透明质酸混合物用于皮肤伤口敷料,加速伤口愈合。","authors":"Tae-Hyun Heo, Bon Kang Gu, Kyungeun Ohk, Jeong-Kee Yoon, Young Hoon Son, Heung Jae Chun, Dae-Hyeok Yang, Gun-Jae Jeong","doi":"10.1007/s13770-025-00712-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair.</p><p><strong>Methods: </strong>PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days.</p><p><strong>Results: </strong>The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses.</p><p><strong>Conclusion: </strong>The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"515-526"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing.\",\"authors\":\"Tae-Hyun Heo, Bon Kang Gu, Kyungeun Ohk, Jeong-Kee Yoon, Young Hoon Son, Heung Jae Chun, Dae-Hyeok Yang, Gun-Jae Jeong\",\"doi\":\"10.1007/s13770-025-00712-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair.</p><p><strong>Methods: </strong>PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days.</p><p><strong>Results: </strong>The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses.</p><p><strong>Conclusion: </strong>The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"515-526\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00712-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00712-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing.
Background: Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair.
Methods: PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days.
Results: The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses.
Conclusion: The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.