Enhancing Skin Regeneration Efficacy of Human Dermal Fibroblasts Using Carboxymethyl Cellulose-Coated Biodegradable Polymer.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING
You Bin Lee, Dong-Hyun Lee, Youn Chul Kim, Suk Ho Bhang
{"title":"Enhancing Skin Regeneration Efficacy of Human Dermal Fibroblasts Using Carboxymethyl Cellulose-Coated Biodegradable Polymer.","authors":"You Bin Lee, Dong-Hyun Lee, Youn Chul Kim, Suk Ho Bhang","doi":"10.1007/s13770-024-00681-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polylactic acid (PLA) is extensively used in the medical and cosmetic industries for skin regeneration and as a dermal filler due to its biocompatibility and biodegradability. However, the effectiveness of PLA as a cosmetic filler is limited by its slow degradation rate and poor cell attachment properties. Recent studies have focused on enhancing the performance of PLA by combining it with other materials. This study aimed to evaluate the performance of carboxymethyl cellulose (CMC), known for its high biocompatibility, in comparison with the widely used hyaluronic acid (HA).</p><p><strong>Methods: </strong>Two types of PLA-based particles, HA-PLA and CMC-PLA were synthesized by combining PLA with HA and CMC, respectively. After characterizing the particles, we evaluated cell adhesion and viability using human dermal fibroblasts and analyzed gene and protein expression related to cell attachment and angiogenic paracrine factors.</p><p><strong>Results: </strong>The CMC-PLA particles maintained a more uniform size distribution than the HA-PLA particles and exhibited superior cell adhesion properties. Cells attached on the CMC-PLA particles showed enhanced secretion of angiogenic paracrine factors, suggesting a potential improvement in therapeutic efficacy.</p><p><strong>Conclusion: </strong>CMC-PLA particles demonstrated superior cell adhesion and secretion capabilities compared with HA-PLA particles, indicating their potential for application in skin regeneration and tissue recovery. Further research, including in vivo studies, is required to fully explore and validate the therapeutic potential of CMC-PLA particles.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00681-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Polylactic acid (PLA) is extensively used in the medical and cosmetic industries for skin regeneration and as a dermal filler due to its biocompatibility and biodegradability. However, the effectiveness of PLA as a cosmetic filler is limited by its slow degradation rate and poor cell attachment properties. Recent studies have focused on enhancing the performance of PLA by combining it with other materials. This study aimed to evaluate the performance of carboxymethyl cellulose (CMC), known for its high biocompatibility, in comparison with the widely used hyaluronic acid (HA).

Methods: Two types of PLA-based particles, HA-PLA and CMC-PLA were synthesized by combining PLA with HA and CMC, respectively. After characterizing the particles, we evaluated cell adhesion and viability using human dermal fibroblasts and analyzed gene and protein expression related to cell attachment and angiogenic paracrine factors.

Results: The CMC-PLA particles maintained a more uniform size distribution than the HA-PLA particles and exhibited superior cell adhesion properties. Cells attached on the CMC-PLA particles showed enhanced secretion of angiogenic paracrine factors, suggesting a potential improvement in therapeutic efficacy.

Conclusion: CMC-PLA particles demonstrated superior cell adhesion and secretion capabilities compared with HA-PLA particles, indicating their potential for application in skin regeneration and tissue recovery. Further research, including in vivo studies, is required to fully explore and validate the therapeutic potential of CMC-PLA particles.

利用羧甲基纤维素包覆的生物可降解聚合物增强人真皮成纤维细胞的皮肤再生功效
背景:聚乳酸(PLA)因其生物相容性和生物降解性,被广泛应用于医疗和美容行业,用于皮肤再生和皮肤填充。然而,聚乳酸降解速度慢、细胞附着性差,限制了其作为美容填充剂的有效性。最近的研究重点是通过将聚乳酸与其他材料结合来提高其性能。本研究旨在评估羧甲基纤维素(CMC)与广泛使用的透明质酸(HA)的性能比较:方法:通过将聚乳酸与 HA 和 CMC 结合,分别合成了两种基于聚乳酸的颗粒:HA-PLA 和 CMC-PLA。在对颗粒进行表征后,我们使用人类真皮成纤维细胞评估了细胞粘附性和存活率,并分析了与细胞粘附和血管生成旁分泌因子相关的基因和蛋白质表达:结果:与 HA-PLA 颗粒相比,CMC-PLA 颗粒的尺寸分布更均匀,细胞粘附性能更优越。附着在 CMC-PLA 颗粒上的细胞显示出血管生成旁分泌因子的分泌增强,这表明治疗效果可能得到改善:结论:与 HA-PLA 颗粒相比,CMC-PLA 颗粒显示出更强的细胞粘附和分泌能力,表明其具有应用于皮肤再生和组织恢复的潜力。要充分探索和验证 CMC-PLA 微粒的治疗潜力,还需要进一步的研究,包括体内研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信