{"title":"Artemisinin emulgel ameliorates cartilage degradation in knee osteoarthritis: <i>in vitro</i> and <i>in vivo</i> studies.","authors":"Samiksha Thote, Atul Mourya, Shristi Arya, Hoshiyar Singh, Prashanth Kumar, Santosh Kumar Guru, Jitender Madan","doi":"10.1080/20415990.2024.2418281","DOIUrl":"10.1080/20415990.2024.2418281","url":null,"abstract":"<p><p><b>Aim:</b> Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).<b>Materials & methods:</b> The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized <i>in vitro</i> and <i>in vivo</i> to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.<b>Results:</b> The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm<sup>2</sup>/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.<b>Conclusion:</b> ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"939-955"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-11-12DOI: 10.1080/20415990.2024.2418800
Sindi P Ndlovu, Shirley C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle M Ngema, Thierry Youmbi Fonkui, Derek Tantoh Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe
{"title":"Sodium alginate/carboxymethylcellulose gel formulations containing <i>Capparis sepieria</i> plant extract for wound healing.","authors":"Sindi P Ndlovu, Shirley C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle M Ngema, Thierry Youmbi Fonkui, Derek Tantoh Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe","doi":"10.1080/20415990.2024.2418800","DOIUrl":"10.1080/20415990.2024.2418800","url":null,"abstract":"<p><p><b>Aim:</b> Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.<b>Materials & methods:</b> Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of <i>Capparis sepiaria</i>. The formulations were characterized using appropriate techniques.<b>Results:</b> The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and <i>in vitro</i> whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.<b>Conclusion:</b> The gels' distinct features reveal their potential application as wound dressings for burn wounds.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"921-937"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-07-18DOI: 10.1080/20415990.2024.2371778
James M Lai, Justin Chen, Juan Carlos Navia, Heather Durkee, Alex Gonzalez, Cornelis Rowaan, Timothy Arcari, Mariela C Aguilar, Katrina Llanes, Noel Ziebarth, Jaime D Martinez, Darlene Miller, Harry W Flynn, Guillermo Amescua, Jean-Marie Parel
{"title":"Enhancing Rose Bengal penetration in <i>ex vivo</i> human corneas using iontophoresis.","authors":"James M Lai, Justin Chen, Juan Carlos Navia, Heather Durkee, Alex Gonzalez, Cornelis Rowaan, Timothy Arcari, Mariela C Aguilar, Katrina Llanes, Noel Ziebarth, Jaime D Martinez, Darlene Miller, Harry W Flynn, Guillermo Amescua, Jean-Marie Parel","doi":"10.1080/20415990.2024.2371778","DOIUrl":"10.1080/20415990.2024.2371778","url":null,"abstract":"<p><p><b>Aim:</b> Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in <i>ex vivo</i> human corneas.<b>Methods:</b> Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.<b>Results:</b> Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 μm vs. 100 ± 5.7 μm, <i>p</i> < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 μm vs. 407 ± 69 μm, <i>p</i> = 0.432).<b>Conclusion:</b> Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"567-575"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-09-26DOI: 10.1080/20415990.2024.2389032
Thomas Foster, Patrick Lim, Corina Mihaela Ionescu, Susbin Raj Wagle, Bozica Kovacevic, Armin Mooranian, Hani Al-Salami
{"title":"Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear.","authors":"Thomas Foster, Patrick Lim, Corina Mihaela Ionescu, Susbin Raj Wagle, Bozica Kovacevic, Armin Mooranian, Hani Al-Salami","doi":"10.1080/20415990.2024.2389032","DOIUrl":"10.1080/20415990.2024.2389032","url":null,"abstract":"<p><p>Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both <i>in vitro</i> and <i>in vivo</i> research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"801-818"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-09-05DOI: 10.1080/20415990.2024.2365620
Amit Kumar Palai, Amit Kumar, Farhan Mazahir, Ankita Sharma, Awesh K Yadav
{"title":"Synthesis and characterization of fullerene-based nanocarrier for targeted delivery of quercetin to the brain.","authors":"Amit Kumar Palai, Amit Kumar, Farhan Mazahir, Ankita Sharma, Awesh K Yadav","doi":"10.1080/20415990.2024.2365620","DOIUrl":"10.1080/20415990.2024.2365620","url":null,"abstract":"<p><p><b>Aim:</b> Preparation of quercetin fullerene conjugate (QFC) for nose-to-brain delivery and their <i>in vitro</i> and <i>ex vivo</i> characterizations.<b>Methods:</b> Carboxylated fullerene was converted into acetylated fullerene and quercetin was conjugated and physically adsorbed on acetylated fullerene.<b>Results:</b> The particle size and zeta potential of QFC and chitosan-coated QFC (CC-QFC) were found to be 179.2 ± 1.10, 293.4 ± 2.757, -5.28 ± 1.43 and 11.6 ± 0.4 respectively. The entrapment efficiency, loading efficiency of QFC were found to be 85.55% and 42.77%. The MTT assay revealed 80.69% SH-SY5Y cell viability at a concentration of 50 μg/ml. CC-QFC showed remarkable (89.20%) <i>ex vivo</i> mucoadhesive properties compared with QFC (66.67%). Further study showed no significant ciliotoxicity by CC-QFC.<b>Conclusion:</b> The obtained results suggested the potential of CC-QFC for treatment in Alzheimer's disease.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"545-559"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-09-24DOI: 10.1080/20415990.2024.2395249
Susana M Gomes, Maria Manuela Gaspar, João Mp Coelho, Catarina Pinto Reis
{"title":"Targeting superficial cancers with gold nanoparticles: a review of current research.","authors":"Susana M Gomes, Maria Manuela Gaspar, João Mp Coelho, Catarina Pinto Reis","doi":"10.1080/20415990.2024.2395249","DOIUrl":"10.1080/20415990.2024.2395249","url":null,"abstract":"<p><p>Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"781-799"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-09-11DOI: 10.1080/20415990.2024.2386928
Girish Kumar, Pushpika Jain, Tarun Virmani, Ashwani Sharma, Md Sayeed Akhtar, Saad A Aldosari, Mohd Faiyaz Khan, Sofia O D Duarte, Pedro Fonte
{"title":"Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin.","authors":"Girish Kumar, Pushpika Jain, Tarun Virmani, Ashwani Sharma, Md Sayeed Akhtar, Saad A Aldosari, Mohd Faiyaz Khan, Sofia O D Duarte, Pedro Fonte","doi":"10.1080/20415990.2024.2386928","DOIUrl":"https://doi.org/10.1080/20415990.2024.2386928","url":null,"abstract":"<p><p>Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":"15 9","pages":"717-735"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced bioavailability and efficacy in antimalarial treatment through QbD approach enteric encased inclusion delivery.","authors":"Neha Bajwa, Preet Amol Singh, Sumant Kumar, Girish Chandra Arya, Ashish Baldi","doi":"10.1080/20415990.2024.2377948","DOIUrl":"10.1080/20415990.2024.2377948","url":null,"abstract":"<p><p><b>Aim:</b> In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.<b>Methods:</b> A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a <i>p</i>-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.<b>Results:</b> <i>In vitro</i> release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. <i>In vivo</i> studies further validated increase of 51.8% oral bioavailability. <i>Ex vivo</i> studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.<b>Conclusion:</b> These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"653-666"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}