{"title":"Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia.","authors":"Neelam Poonia, Nikita Vijay Jadhav, Davuluri Mamatha, Manoj Garg, Atul Kabra, Amit Bhatia, Shreesh Ojha, Viney Lather, Deepti Pandita","doi":"10.1080/20415990.2024.2394012","DOIUrl":"10.1080/20415990.2024.2394012","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"893-910"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer.","authors":"Boya Manasa Sai, Yirivinti Hayagreeva Dinakar, Hitesh Kumar, Rupshee Jain, Sharyu Kesharwani, Siddharth S Kesharwani, Shyam Lal Mudavath, Ajmeer Ramkishan, Vikas Jain","doi":"10.1080/20415990.2024.2400044","DOIUrl":"10.1080/20415990.2024.2400044","url":null,"abstract":"<p><p>Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"871-891"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11498026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-04-30DOI: 10.4155/tde-2023-0107
Mohammad Soroosh Hajizade, Mohammad Javad Raee, Seyed Nooreddin Faraji, Fakhrossadat Farvadi, Maryam Kabiri, Sedigheh Eskandari, Ali Mohammad Tamaddon
{"title":"Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an <i>in silico</i> study.","authors":"Mohammad Soroosh Hajizade, Mohammad Javad Raee, Seyed Nooreddin Faraji, Fakhrossadat Farvadi, Maryam Kabiri, Sedigheh Eskandari, Ali Mohammad Tamaddon","doi":"10.4155/tde-2023-0107","DOIUrl":"10.4155/tde-2023-0107","url":null,"abstract":"<p><p><b>Aim:</b> Streptokinase has poor selectivity and provokes the immune response. In this study, we used <i>in silico</i> studies to design a fusion protein to achieve targeted delivery to the thrombus. <b>Materials & methods:</b> Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. <b>Results:</b> Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. <b>Conclusion:</b> Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"399-411"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of fexofenadine self-microemulsifying delivery systems: an efficient way to improve intestinal permeability.","authors":"Ziba Islambulchilar, Ashkan Barfar, Shahla Mirzaeei","doi":"10.1080/20415990.2024.2363635","DOIUrl":"10.1080/20415990.2024.2363635","url":null,"abstract":"<p><p><b>Aim:</b> The present study aimed to prepare and evaluate fexofenadine self-microemulsifying drug-delivery systems (SMEDDS) formulation and to determine and compare its intestinal permeability using <i>in situ</i> single-pass intestinal perfusion (SPIP) technique.<b>Methods:</b> Fexofenadine-loaded SMEDDS were prepared and optimized. Droplet size, polydispersity index, zeta potential, drug release and intestinal permeability were evaluated.<b>Results:</b> Optimized formulation consisted of 15% oil, 80% surfactant and 5% cosolvent. Droplet size and drug loading of optimized formulation was 13.77 nm and 60 mg/g and it has released 90% of its drug content. Intestinal permeability of fexofenadine was threefold enhanced in SMEDDS compared with free fexofenadine.<b>Conclusion:</b> The results of our study revealed that SMEDDS could be a promising tool for oral delivery of fexofenadine with enhanced dissolution rate and intestinal permeability.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"593-604"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-10-03DOI: 10.1080/20415990.2024.2406226
Abrahem Sayed, Pranesh Ravichandran, Cecilia Canizela, Rehan M Hussain
{"title":"Role of EYP-1901 in neovascular age-related macular degeneration and diabetic eye diseases: review of Phase I/II trials.","authors":"Abrahem Sayed, Pranesh Ravichandran, Cecilia Canizela, Rehan M Hussain","doi":"10.1080/20415990.2024.2406226","DOIUrl":"10.1080/20415990.2024.2406226","url":null,"abstract":"<p><p>EYP-1901 (Duravyu) has demonstrated promising outcomes in Phases I and II clinical trials for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME)/diabetic retinopathy. This innovative treatment capitalizes on the potent anti-angiogenic properties of vorolanib, an inhibitor that targets all isoforms of VEGF, effectively mitigating the pathological neovascularization and vascular permeability that underpin these retinal conditions. EYP-1901 is integrated with the Durasert drug delivery system to administer a sustained release of vorolanib directly to the posterior segment of the eye. This delivery system ensures a consistent therapeutic effect over an extended period and significantly reduces the frequency of clinical interventions required, offering a more convenient treatment regimen while maintaining patient safety.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"829-843"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial peptide-fibrin glue mixture for treatment of methicillin-resistant <i>Staphylococcus aureus</i>-infected wounds.","authors":"Mehran Bahreini, Mehrdad Moosazadeh Moghaddam, Masoud Ghorbani, Mohammad Reza Nourani, Reza Mirnejad","doi":"10.1080/20415990.2024.2369497","DOIUrl":"10.1080/20415990.2024.2369497","url":null,"abstract":"<p><p><b>Aim:</b> This study was conducted to investigate the effect of fibrin glue-CM11 antibacterial peptide mixture (FG-P) on the healing of infected wounds <i>in vivo</i>.<b>Materials & methods:</b> We formulated a mixture of FG-P and evaluated its antimicrobial activity <i>in vitro</i> against multidrug-resistant (MDR) bacteria involved in wound infection as well as its healing effect on wound infected by methicillin-resistant <i>S. aureus</i> (MRSA) <i>in vivo</i>.<b>Results:</b> The peptide had an MIC of 8 μg/ml against all bacteria isolates. Growth inhibition zones were evident for FG-P compared with FG. The <i>in vivo</i> study showed that the FG-P could be significantly effective in healing the MRSA-infected wound.<b>Conclusion:</b> The use of FG-P mixture is a very suitable option for treating infected wounds.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"577-591"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of sphingolipid-based nanocarriers in drug delivery: an overview.","authors":"Samarth Kumar, Ajit Singh, Prachi Pandey, Ajay Khopade, Krutika K Sawant","doi":"10.1080/20415990.2024.2377066","DOIUrl":"10.1080/20415990.2024.2377066","url":null,"abstract":"<p><p>Sphingolipids (SL) are well recognized for their cell signaling through extracellular and intracellular pathways. Based on chemistry different types of SL are biosynthesized in mammalian cells and have specific function in cellular activity. SL has an ampiphilic structure with have hydrophobic body attached to the polar head enables their use as a drug delivery agent in the form of nanocarriers. SL-based liposomes can improve the solubility of lipophilic drugs through host and drug complexes and are more stable than conventional liposomal formulations. Preclinical studies of SL nanocarriers are reported on topical delivery, oral delivery, ocular delivery, chemotherapeutic delivery, cardiovascular delivery and Alzheimer's disease. The commercial challenges and patents related to SL nanoformulations are highlighted in this article.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"619-637"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-10-18DOI: 10.1080/20415990.2024.2414732
Peter Timmins
{"title":"Industry Update: the latest developments in the field of therapeutic delivery, July 2024.","authors":"Peter Timmins","doi":"10.1080/20415990.2024.2414732","DOIUrl":"https://doi.org/10.1080/20415990.2024.2414732","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":"15 12","pages":"911-920"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}