Hasan Al-Nasrawi, Naeem Shalan, Bassam M Abualsoud, Hamdi Nsairat
{"title":"Preparation, characterization and <i>in vitro</i> evaluation of 5-fluorouracil loaded into chitosan-acacia gum nanoparticles.","authors":"Hasan Al-Nasrawi, Naeem Shalan, Bassam M Abualsoud, Hamdi Nsairat","doi":"10.4155/tde-2023-0136","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> In this study, we prepared, characterized and <i>in vitro</i> evaluated a 5-fluorouracil (5-FU)-loaded chitosan-acacia gum nanoparticles. <b>Methods:</b> Nanoparticles were characterized for their size, charge, morphology and encapsulation efficiency (EE%) followed by cellular investigations against HT-29 colon cancer cell line. <b>Results:</b> The nanoparticles exhibited a spherical morphological size with 94.42% EE%. Free 5-FU showed a fast and fully cumulative release after 6 h while 5-FU loaded into CS-AG NPs showed good entrapment and slow, prolonged 5-FU release even after 24 h. Enhanced IC<sub>50</sub> for the 5-FU loaded NPs compared with free 5-FU against HT-29 colon cancer cell line was reported with high selectivity compared with normal fibroblast cells. <b>Conclusion:</b> 5-FU loaded NPs is promising nano-therapy against colon cancer.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: In this study, we prepared, characterized and in vitro evaluated a 5-fluorouracil (5-FU)-loaded chitosan-acacia gum nanoparticles. Methods: Nanoparticles were characterized for their size, charge, morphology and encapsulation efficiency (EE%) followed by cellular investigations against HT-29 colon cancer cell line. Results: The nanoparticles exhibited a spherical morphological size with 94.42% EE%. Free 5-FU showed a fast and fully cumulative release after 6 h while 5-FU loaded into CS-AG NPs showed good entrapment and slow, prolonged 5-FU release even after 24 h. Enhanced IC50 for the 5-FU loaded NPs compared with free 5-FU against HT-29 colon cancer cell line was reported with high selectivity compared with normal fibroblast cells. Conclusion: 5-FU loaded NPs is promising nano-therapy against colon cancer.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.