Therapeutic deliveryPub Date : 2024-02-01Epub Date: 2024-01-10DOI: 10.4155/tde-2023-0139
Peter Timmins
{"title":"Industry update: the latest developments in the field of therapeutic delivery, October 2023.","authors":"Peter Timmins","doi":"10.4155/tde-2023-0139","DOIUrl":"10.4155/tde-2023-0139","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"77-94"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-02-01Epub Date: 2024-01-05DOI: 10.4155/tde-2023-0063
Bozica Kovacevic, Corina Mihaela Ionescu, Melissa Jones, Susbin Raj Wagle, Thomas Foster, Michael Lewkowicz, Elaine Ym Wong, Maja Ðanić, Momir Mikov, Armin Mooranian, Hani Al-Salami
{"title":"Novel polysaccharides-bile acid-cyclodextrin gel systems and effects on cellular viability and bioenergetic parameters.","authors":"Bozica Kovacevic, Corina Mihaela Ionescu, Melissa Jones, Susbin Raj Wagle, Thomas Foster, Michael Lewkowicz, Elaine Ym Wong, Maja Ðanić, Momir Mikov, Armin Mooranian, Hani Al-Salami","doi":"10.4155/tde-2023-0063","DOIUrl":"10.4155/tde-2023-0063","url":null,"abstract":"<p><p><b>Aim:</b> The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. <b>Materials & methods:</b> To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. <b>Results & conclusion:</b> All hydrogels show non-Newtonian, shear thinning behavior. Cells displayed various oxygen-dependent viability patterns, with the bile acid overall adversely affecting their biological activities. All cells performed best under normoxia, with pancreatic beta cells displaying the most profound oxygen-dependent viability behavior. The cells tolerated the addition of a moderate concentration of beta-cyclodextrin to the polymer matrix.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"119-134"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cationic microemulsion of voriconazole for the treatment of fungal keratitis: <i>in vitro</i> and <i>in vivo</i> evaluation.","authors":"Parasuraman Mohan, Jothimani Rajeswari, Karthikeyan Kesavan","doi":"10.4155/tde-2023-0069","DOIUrl":"https://doi.org/10.4155/tde-2023-0069","url":null,"abstract":"<p><p><b>Aim:</b> This investigation aimed to develop a voriconazole-loaded chitosan-coated cationic microemulsion (CVME) to treat fungal keratitis. <b>Methods:</b> Microemulsions were prepared using water titration, and the optimized microemulsion was coated with chitosan to prepare CVME. The physicochemical parameters, ocular irritation potential, <i>in vitro</i> antifungal efficacy and <i>in vitro</i> release studies were performed. The <i>in vivo</i> antifungal efficacy study was conducted in a fungal infection-induced rabbit eye model. <b>Results:</b> The developed CVME displayed acceptable physicochemical properties and excellent mucoadhesive behavior and showed a sustained release profile. <i>Ex vivo</i> and <i>in vivo</i> studies concluded that higher permeability and improved antifungal efficacy were observed for CVME than drug suspension (DS). <b>Conclusion:</b> The prepared CVME7 is a viable alternative to treating fungal keratitis with existing approaches.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami
{"title":"The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells.","authors":"Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami","doi":"10.4155/tde-2023-0054","DOIUrl":"https://doi.org/10.4155/tde-2023-0054","url":null,"abstract":"<p><p><b>Aim:</b> The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. <b>Materials & methods:</b> Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. <b>Results and conclusion:</b> Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells. Further research is needed as proposed hydrogels may be beneficial for cell delivery systems of pancreatic beta cells.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanotherapeutics for the delivery of antifungal drugs.","authors":"Blessing Atim Aderibigbe","doi":"10.4155/tde-2023-0090","DOIUrl":"https://doi.org/10.4155/tde-2023-0090","url":null,"abstract":"<p><p>The treatment of fungal infections is challenging with high death rates reported among immunocompromised patients. The currently available antifungals suffer from poor bioavailability and solubility, pharmacokinetics, and drug resistance, with limited cellular uptake. The clinical pipeline of new antifungals is dry. The incorporation of antifungal drugs into polymer-based nanocarriers to form nanotherapeutics is a promising approach to enhance the therapeutic outcomes of the available antifungal drugs. This review summarizes different polymer-based nanotherapeutics strategies that have been explored for the delivery of antifungals, resulting in enhanced therapeutic outcomes, such as improved pharmacokinetics, targeted/sustained delivery, prolonged drug circulation, retention of the drugs at the localized site of action, and overcoming drug resistance when compared with the free antifungal drugs.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-10-16DOI: 10.1080/20415990.2024.2412511
Cintia Alejandra Briones Nieva, Juan Pablo Real, Santiago Nicolás Campos, Analía Irma Romero, Mercedes Villegas, Elio Emilio Gonzo, José María Bermúdez, Santiago Daniel Palma, Alicia Graciela Cid
{"title":"Modeling and evaluation of ivermectin release kinetics from 3D-printed tablets.","authors":"Cintia Alejandra Briones Nieva, Juan Pablo Real, Santiago Nicolás Campos, Analía Irma Romero, Mercedes Villegas, Elio Emilio Gonzo, José María Bermúdez, Santiago Daniel Palma, Alicia Graciela Cid","doi":"10.1080/20415990.2024.2412511","DOIUrl":"10.1080/20415990.2024.2412511","url":null,"abstract":"<p><p><b>Aim:</b> This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets.<b>Materials & methods:</b> An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.<b>Results:</b> The results confirmed the suitability of the ink for 3D printing at a temperature >46°C. Changes in the crystallinity of ivermectin were observed without chemical interactions with the polymer. 3D printed tablets with varied proportional sizes showed dual behavior in their release profiles, while tablets with only thickness reduction exhibited zero-order kinetics.<b>Conclusion:</b> These findings highlight the versatility of 3D printing to create systems with specific and customized release profiles.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":"15 11","pages":"845-858"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-07-29DOI: 10.1080/20415990.2024.2377065
Fatima Ramzan Ali, Muhammad Harris Shoaib, Syed Abid Ali, Rabia Ismail Yousuf, Farrukh Rafiq Ahmed, Fahad Siddiqui, Sana Sarfaraz, Rameez Raja
{"title":"Fabrication and evaluation of nanoemulsion based insulin loaded microneedles for transdermal drug delivery.","authors":"Fatima Ramzan Ali, Muhammad Harris Shoaib, Syed Abid Ali, Rabia Ismail Yousuf, Farrukh Rafiq Ahmed, Fahad Siddiqui, Sana Sarfaraz, Rameez Raja","doi":"10.1080/20415990.2024.2377065","DOIUrl":"10.1080/20415990.2024.2377065","url":null,"abstract":"<p><p><b>Aim:</b> Insulin therapy require self-administration of subcutaneous injection leading to painful and inconvenient drug therapy. The aim is to fabricate nanoemulsion (NE) based insulin loaded microneedles with improved bioavailability and patient compliance.<b>Materials & methods:</b> Different ratios of polyvinyl alcohol and polyvinylpyrrolidone as polymers were prepared through micro-molding technique for microneedles. Characterization of were performed using scanning electron microscope, differential scanning calorimetry, Fourier-transform infrared spectroscopy and circular dichroism. Mechanical strength, hygroscopicity and pain perception of these microneedles were also evaluated. <i>In vitro</i> release, permeation and <i>in vivo</i> PK/PD study of NE-based microneedles were conducted.<b>Results:</b> NE-based microneedles of insulin have improved bioavailability and quick response.<b>Conclusion:</b> Microneedles loaded with insulin can be effectively delivered insulin transdermally to treat diabetes with increased convenience and patient compliance.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"605-617"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic deliveryPub Date : 2024-01-01Epub Date: 2024-08-05DOI: 10.1080/20415990.2024.2379756
Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati
{"title":"A novel liposomal formulation for ocular delivery of caspofungin: an experimental study by quality by design-based approach.","authors":"Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati","doi":"10.1080/20415990.2024.2379756","DOIUrl":"10.1080/20415990.2024.2379756","url":null,"abstract":"<p><p><b>Aim:</b> This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.<b>Method:</b> Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.<b>Results:</b> The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.<b>Conclusion:</b> The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"667-683"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.","authors":"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan","doi":"10.1080/20415990.2024.2380239","DOIUrl":"10.1080/20415990.2024.2380239","url":null,"abstract":"<p><p><b>Aim:</b> Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.<b>Materials & methods:</b> Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, <i>in vitro</i> cytotoxicity, <i>in vivo</i> pharmacokinetic and biodistribution studies.<b>Results:</b> Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.<b>Conclusion:</b> ACNs exhibited high t<sub>1/2</sub> (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"685-698"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}