通过封装在多层脂质体中有效释放海腥草茧提取物,用于皮肤给药。

IF 2.2 Q2 PHARMACOLOGY & PHARMACY
Therapeutic delivery Pub Date : 2025-05-01 Epub Date: 2025-02-28 DOI:10.1080/20415990.2025.2470614
Euihyun Kim, Jihyeon Jang, Myeong-Jin Lim, Soo-Yun Kim, Seon Kyu Yun, Jihyeok Song, Hyo Hyun Seo, Jeong Hun Lee, Sang Hyun Moh
{"title":"通过封装在多层脂质体中有效释放海腥草茧提取物,用于皮肤给药。","authors":"Euihyun Kim, Jihyeon Jang, Myeong-Jin Lim, Soo-Yun Kim, Seon Kyu Yun, Jihyeok Song, Hyo Hyun Seo, Jeong Hun Lee, Sang Hyun Moh","doi":"10.1080/20415990.2025.2470614","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to evaluate the potential of <i>Eryngium maritimum</i> L. (EM) callus media filtrate (ECMF) for enhanced skin delivery through multilayered liposomes (MLs).</p><p><strong>Materials & methods: </strong>ECMF was applied to human skin cells to assess its antioxidant, anti-inflammatory, and skin barrier-enhancing properties. ECMF was encapsulated in MLs to enhance delivery efficiency, creating a formulation called Cellbiome. Clinical trials involving human participants were conducted to compare its effects with traditional formulations, assessing parameters such as skin density, hydration, elasticity, and wrinkle reduction.</p><p><strong>Results: </strong>Cellbiome significantly improved skin density and moisturization, outperforming conventional formulations. ML encapsulation facilitated deeper penetration of active ingredients beyond the stratum corneum, leading to synchronized improvements in multiple skin parameters, including elasticity, wrinkle reduction, and overall skin health. Transcriptomic and metabolomic analyses further confirmed ECMF's bioactivity and its role in skin improvement.</p><p><strong>Conclusions: </strong>ML-based formulations, such as Cellbiome, offer superior efficacy in skincare applications compared to conventional methods. This study underscores the importance of advanced delivery technologies in cosmetics and highlights the need for further research to optimize the benefits of natural extracts like EM for human skin, potentially advancing dermatological and cosmeceutical applications.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"459-473"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effective release of <i>Eryngium maritimum</i> L. callus extract via encapsulation in multilayered liposomes for skin delivery.\",\"authors\":\"Euihyun Kim, Jihyeon Jang, Myeong-Jin Lim, Soo-Yun Kim, Seon Kyu Yun, Jihyeok Song, Hyo Hyun Seo, Jeong Hun Lee, Sang Hyun Moh\",\"doi\":\"10.1080/20415990.2025.2470614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to evaluate the potential of <i>Eryngium maritimum</i> L. (EM) callus media filtrate (ECMF) for enhanced skin delivery through multilayered liposomes (MLs).</p><p><strong>Materials & methods: </strong>ECMF was applied to human skin cells to assess its antioxidant, anti-inflammatory, and skin barrier-enhancing properties. ECMF was encapsulated in MLs to enhance delivery efficiency, creating a formulation called Cellbiome. Clinical trials involving human participants were conducted to compare its effects with traditional formulations, assessing parameters such as skin density, hydration, elasticity, and wrinkle reduction.</p><p><strong>Results: </strong>Cellbiome significantly improved skin density and moisturization, outperforming conventional formulations. ML encapsulation facilitated deeper penetration of active ingredients beyond the stratum corneum, leading to synchronized improvements in multiple skin parameters, including elasticity, wrinkle reduction, and overall skin health. Transcriptomic and metabolomic analyses further confirmed ECMF's bioactivity and its role in skin improvement.</p><p><strong>Conclusions: </strong>ML-based formulations, such as Cellbiome, offer superior efficacy in skincare applications compared to conventional methods. This study underscores the importance of advanced delivery technologies in cosmetics and highlights the need for further research to optimize the benefits of natural extracts like EM for human skin, potentially advancing dermatological and cosmeceutical applications.</p>\",\"PeriodicalId\":22959,\"journal\":{\"name\":\"Therapeutic delivery\",\"volume\":\" \",\"pages\":\"459-473\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20415990.2025.2470614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2025.2470614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估海百合(EM)愈伤组织培养基滤液(ECMF)通过多层脂质体(MLs)增强皮肤递送的潜力。材料与方法:将ECMF应用于人体皮肤细胞,评估其抗氧化、抗炎和增强皮肤屏障的性能。ECMF被封装在ml中以提高递送效率,创造了一种称为Cellbiome的配方。研究人员进行了涉及人体参与者的临床试验,以比较其与传统配方的效果,评估皮肤密度、水合作用、弹性和皱纹减少等参数。结果:Cellbiome显着改善皮肤密度和保湿,优于传统配方。ML包封促进活性成分深入渗透到角质层之外,从而同步改善多种皮肤参数,包括弹性,皱纹减少和整体皮肤健康。转录组学和代谢组学分析进一步证实了ECMF的生物活性及其在皮肤改善中的作用。结论:与传统方法相比,基于ml的制剂,如Cellbiome,在护肤应用中具有优越的功效。这项研究强调了先进的给药技术在化妆品中的重要性,并强调了进一步研究的必要性,以优化EM等天然提取物对人体皮肤的益处,潜在地推进皮肤病学和药妆应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective release of Eryngium maritimum L. callus extract via encapsulation in multilayered liposomes for skin delivery.

Aims: This study aimed to evaluate the potential of Eryngium maritimum L. (EM) callus media filtrate (ECMF) for enhanced skin delivery through multilayered liposomes (MLs).

Materials & methods: ECMF was applied to human skin cells to assess its antioxidant, anti-inflammatory, and skin barrier-enhancing properties. ECMF was encapsulated in MLs to enhance delivery efficiency, creating a formulation called Cellbiome. Clinical trials involving human participants were conducted to compare its effects with traditional formulations, assessing parameters such as skin density, hydration, elasticity, and wrinkle reduction.

Results: Cellbiome significantly improved skin density and moisturization, outperforming conventional formulations. ML encapsulation facilitated deeper penetration of active ingredients beyond the stratum corneum, leading to synchronized improvements in multiple skin parameters, including elasticity, wrinkle reduction, and overall skin health. Transcriptomic and metabolomic analyses further confirmed ECMF's bioactivity and its role in skin improvement.

Conclusions: ML-based formulations, such as Cellbiome, offer superior efficacy in skincare applications compared to conventional methods. This study underscores the importance of advanced delivery technologies in cosmetics and highlights the need for further research to optimize the benefits of natural extracts like EM for human skin, potentially advancing dermatological and cosmeceutical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Therapeutic delivery
Therapeutic delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.50
自引率
0.00%
发文量
25
期刊介绍: Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信