H. Chuang, W. Lai, Chih-Chung Huang, A. Liao, C. Yeh
{"title":"Fabrication of through-silicon vias (TSV) by nickel electroplating in supercritical CO2","authors":"H. Chuang, W. Lai, Chih-Chung Huang, A. Liao, C. Yeh","doi":"10.1109/NEMS.2014.6908770","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908770","url":null,"abstract":"3D integrated circuit (IC) structure could provide larger patterning areas by stacking the multi-planar chips, in which the electrical signals can be vertically conducted via through-silicon vias (TSVs). Thus, its advantages are lowered costs and reduced packaging space, size and weight. In this study, the TSVs are fabricated and characterized. Four through holes with a diameter of 70 μm on a silicon wafer are filled by nickel electroplating in supercritical CO2. The chip is cut for observation and examination of the cross-sectional view of the TSVs. The average electrical resistance across the TSVs was measured 0.01Ω. Then the fabricated TSVs can be applied a maximum current of 10 Amps continuously without burnout.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"10 1","pages":"108-112"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77973295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Riaz, S. Leung, S. Tripathi, Gursimran Singh Sethi, H. Shagoshtasbi, Z. Fan, Y.-K. Lee
{"title":"An Aluminum Nano-Spike electroporation chip for low voltage delivery of molecules to cancer cells","authors":"K. Riaz, S. Leung, S. Tripathi, Gursimran Singh Sethi, H. Shagoshtasbi, Z. Fan, Y.-K. Lee","doi":"10.1109/NEMS.2014.6908779","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908779","url":null,"abstract":"Micro electroporation (EP) devices with high efficiency and cell viability are useful for various biomedical applications, such as drug delivery and screening. However, these devices usually have low reliability due to undesirable electrochemical reactions. In this study, an Aluminum Nano-Spike EP (ANS-EP) chip was fabricated using nano-imprint lithography, electrochemical anodization and MEMS technology. The fabricated device was characterized using cervical cancer cell line (HeLa cells). The EP efficiency and cell viability as functions of electric pulse amplitude and duration were measured using digital fluorescent microscopy with Propidium Iodide (PI) dye. Numerical simulations of electric field strength indicated enhanced localized electric field at the tip due to high aspect ratio of nano-spikes. Systematic experiments revealed EP can be achieved with high efficiency and cell viability using ANS-EP chips without bubble generation at the critical applied voltage of 2.5 V, much smaller than the micro and conventional electroporators.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"12 1","pages":"147-151"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78990960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel micromixer with multimixing mechanisms for high mixing efficiency at low Reynolds number","authors":"H. L. The, N. Tran-Minh, H. Le-Thanh, F. Karlsen","doi":"10.1109/NEMS.2014.6908896","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908896","url":null,"abstract":"In this paper, we propose a novel passive micromixer structure for high mixing efficiency based on the combination of multimixing principles. With a special structure, our proposed micromixer can create vortices, transversal flows and chaotic advections to provide high mixing efficiency event at low Reynolds number. Moreover, two narrow slits at two ends of each mixing unit remarkably reduce pressure drop, making it easy to be built into micro-devices. We conduct intensive simulation to evaluate the performance of our proposed micromixer by numerically solving the governing Navier-Stokes equation and convection-diffusion equation using COMSOL Multiphysics package. The simulation results indicate that our proposed micromixer may achieve stable mixing efficiency of 80% or above for a wide Reynolds number range from 0.5 to 100. Especially, at Reynolds number (Re) > 30, mixing efficiency is less dependent on Reynolds number. The mixing efficiency of our micromixer is two times higher than mixing efficiency of micromixer based on unbalanced splits and collisions of fluid at the same mixing channel length of 5mm. At Re = 30, our proposed micromixer has high mixing efficiency of 85% with moderate pressure drop ΔP = 12,600Pa.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"98 1","pages":"651-654"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80910491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular delivery and transfection by laser-induced oscillating microbubbles","authors":"Qihui Fan, Wenqi Hu, A. Ohta","doi":"10.1109/NEMS.2014.6908813","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908813","url":null,"abstract":"Exogenous molecules were successfully delivered into localized single mammalian adherent cells with oscillating microbubbles induced by microsecond laser pulses. The shear stress due to the oscillation of the microbubble causes the poration of a nearby cell. Specific single cells can be porated by adjusting the laser position to create the microbubbles beneath the target cell. The poration of localized single cells was demonstrated with the delivery of 500-kDa FITC-Dextran dye and 16-kb plasmids.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"4 1","pages":"302-305"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90067106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung-Jieh Yang, Jia-Chi Liang, Cheng-Yang Liu, Hsieh-Cheng Han
{"title":"Dynamic attachment of HepG2 in fractal microchannels","authors":"Lung-Jieh Yang, Jia-Chi Liang, Cheng-Yang Liu, Hsieh-Cheng Han","doi":"10.1109/NEMS.2014.6908757","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908757","url":null,"abstract":"Dynamic filling experiments using HepG2 tumor cells are performed for observing the attachment behavior novelly in fractal microchannels. A PDMS microchannel mimicking the capillary blood vessel with fractal configuration is fabricated by the gelatin salt-out technique and the PDMS soft lithography. The fabrication of this low-toxicity fractal PDMS microchannel is firstly addressed herein. Using this PDMS microchannel, PBS with living HepG2 tumor cells are filled through. The cell attachment areas in the PDMS microchannel have been recorded dynamically with 10 min interval continuously for 2 hours. The result show that 2 hour is not enough for the permanent cell attachment of HepG2 in this fractal PDMS microchannel.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"33 1","pages":"51-54"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83968082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Hu, Wen Liu, F. Zhu, Xiao-Sheng Zhang, Haixia Zhang
{"title":"The fabrication of PDMS-based functional surface mimicking the namib desert beetle back for collecting water vapor in the air","authors":"Wei Hu, Wen Liu, F. Zhu, Xiao-Sheng Zhang, Haixia Zhang","doi":"10.1109/NEMS.2014.6908840","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908840","url":null,"abstract":"This paper presents novel functional surface designed for collecting water vapor, which is combined of PDMS and the micro level hydrophilic metal alloy ball. To imitate biological structure, the metallic balls are designed as hydrophilic part and PDMS substrate as hydrophobic structure. The ball is used as nucleation centers to absorb water vapor in the air to form droplet. Then, with the drop gradually growing up, it will fall off from the ball by gravity. The hydrophobic property of PDMS could promote tumbling of drop more smoothly without adhesion. This device is fabricated by micromachining process, where using PMMA as reverse mold and depositing fluorocarbon films on the PDMS to further enhance the hydrophobic property. The test results prove that this idea and water collection can be achieved obviously.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"70 1","pages":"417-421"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86299306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulse mode actuation-readout system based on MEMS resonator for liquid sensing","authors":"Meng Tang, A. Cagliani, Z. Davis, Lin He","doi":"10.1109/NEMS.2014.6908794","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908794","url":null,"abstract":"A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"16 1","pages":"216-219"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85897278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of hazardous vapors including mixture in different conditions using surface acoustic wave device array","authors":"H. Hao, Ming-Chang Chiang, D. Yao","doi":"10.1109/NEMS.2014.6908754","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908754","url":null,"abstract":"In this research, a surface acoustic wave (SAW) sensor was used for chemical compounds detection such as ammonia, methane, and ammonia/methane mixture gases. The detection results of ammonia/methane mixture gases by polymer deposited on 128° YX-LiNbO3 SAW delay lines were presented. To enhance the sensitivity and accuracy of the surface acoustic wave sensors, the sensing chamber and polymer films was improved. Very low concentration of ammonia (~250 ppb) and methane(~9 ppm) could be detected by this SAW sensor. From the sensing database of ammonia and methane, we Figured out that the frequency shift of ammonia/methane mixtures was equal to the sum of frequency shift of ammonia and methane. Besides, the signal loss of ammonia was much stronger than methane in high relative humidity conditions. Here, superposition effect between ammonia and methane sensing signals could be used for the signal intensity prediction of different concentrations ammonia/methane mixture gases.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"10 1","pages":"38-41"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84686400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The demand model of electric field strength on microelectrode designed for AC electrokinetic applications","authors":"N. A. M. Yunus, H. Jaafar, I. Halin, J. Jasni","doi":"10.1109/NEMS.2014.6908890","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908890","url":null,"abstract":"This paper presents an investigation of electric field strength using the Multi-Physics Finite Element Solution Environment for Partial Differential Equations, FlexPDE. It is to give an idea on the flow of particles in lab on a chip (LoC) and bioMEMS devices when they passed through the active microelectrode array using one of the AC electrokinetic techniques that is dielectrophoresis. The field strength regions can give an overview of particle motion either to high electric field strength or to low electric field strength in relation to the dielectrophoretic force. The results from this investigation will be used to justify the direction of particles flow in the LoC device during experimental work.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"15 1","pages":"628-632"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87801239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. S. Wasisto, S. Merzsch, F. Steib, A. Waag, E. Peiner
{"title":"In-plane-excited silicon nanowire arrays-patterned cantilever sensors for enhanced airborne particulate matter exposure detection","authors":"H. S. Wasisto, S. Merzsch, F. Steib, A. Waag, E. Peiner","doi":"10.1109/NEMS.2014.6908753","DOIUrl":"https://doi.org/10.1109/NEMS.2014.6908753","url":null,"abstract":"This paper presents the design, fabrication, and use of silicon nanowire (SiNW) arrays-patterned microcantilever sensors excited in the in-plane resonance mode to enhance the detection of airborne particulate matter (PM). Electrothermal excitation elements of p-diffused heating resistors were introduced in the current sensor system to replace the formerly used external piezoceramic stack actuator. The sensors exhibited high measured quality factors (Q-factors) of 4702 ± 102 during their in-plane mode operations in air, which are four times larger than those of the fundamental out-of-plane mode. To selectively define arrays of vertical SiNWs on the surface of the micromechanical cantilever, nanoimprint lithography (NIL) is combined with conventional photolithography. The diameter and position of the SiNWs can be adjusted depending on the nanoimprint stamp with the smallest cylindrical pattern possible down to 50 nm in diameter. By modifying the resonator surface, the PM sampling efficiency can be improved by a factor of 1.5 greater than that of a corresponding plain cantilever in a cigarette smoke exposure experiment because of the rise in collection surface area of the sensor given by the SiNWs.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"15 1","pages":"32-37"},"PeriodicalIF":0.0,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89519056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}