StructurePub Date : 2024-11-13DOI: 10.1016/j.str.2024.10.025
María Ángeles Márquez-Moñino, Clara M. Santiveri, Patricia de León, Sergio Camero, Ramón Campos-Olivas, M. Ángeles Jiménez, Margarita Sáiz, Beatriz González, José Manuel Pérez-Cañadillas
{"title":"The ALS drug riluzole binds to the C-terminal domain of SARS-CoV-2 nucleocapsid protein and has antiviral activity","authors":"María Ángeles Márquez-Moñino, Clara M. Santiveri, Patricia de León, Sergio Camero, Ramón Campos-Olivas, M. Ángeles Jiménez, Margarita Sáiz, Beatriz González, José Manuel Pérez-Cañadillas","doi":"10.1016/j.str.2024.10.025","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.025","url":null,"abstract":"Nucleoproteins (N) play an essential role in virus assembly and are less prone to mutation than other viral structural proteins, making them attractive targets for drug discovery. Using an NMR fragment-based drug discovery approach, we identified the 1,3-benzothiazol-2-amine (BZT) group as a scaffold to develop potential antivirals for SARS-CoV-2 nucleocapsid (N) protein. A thorough characterization of BZT derivatives using NMR, X-ray crystallography, antiviral activity assays, and intrinsic fluorescence measurements revealed their binding in the C-terminal domain (CTD) domain of the N protein, to residues Arg 259, Trp 330, and Lys 338, coinciding with the nucleotide binding site. Our most effective compound exhibits a slightly better affinity than GTP and the ALS drug riluzole, also identified during the screening, and displays notable viral inhibition activity. A virtual screening of 218 BZT-based compounds revealed a potential extended binding site that could be exploited for the future development of new SARS-CoV-2 antivirals.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"41 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and biochemical insights into the mechanism of the anti-CRISPR protein AcrIE3","authors":"Jasung Koo, Gyujin Lee, Changkon Park, Hyejin Oh, Sung-Hyun Hong, Jeong-Yong Suh, Euiyoung Bae","doi":"10.1016/j.str.2024.10.024","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.024","url":null,"abstract":"Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas systems, found in bacteriophages and other genetic elements. AcrIE3, identified in a <em>Pseudomonas</em> phage, inactivates the type I-E CRISPR-Cas system in <em>Pseudomonas aeruginosa</em> by engaging with the Cascade complex. However, its precise inhibition mechanism has remained elusive. In this study, we present a comprehensive structural and biochemical analysis of AcrIE3, providing mechanistic insight into its anti-CRISPR function. Our results reveal that AcrIE3 selectively binds to the Cas8e subunit of the Cascade complex. The crystal structure of AcrIE3 exhibits an all-helical fold with a negatively charged surface. Through extensive mutational analyses, we show that AcrIE3 interacts with the protospacer adjacent motif (PAM) recognition site in Cas8e through its negatively charged surface residues. These findings enhance our understanding of the structure and function of type I-E Acr proteins, suggesting PAM interaction sites as primary targets for divergent Acr inhibitors.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"95 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-13DOI: 10.1016/j.str.2024.10.026
Cheng Li, Yunqiang Bian, Yiting Tang, Lingyu Meng, Peipei Yin, Ye Hong, Jun Cheng, Yuchen Li, Jie Lin, Chao Tang, Chunlai Chen, Wenfei Li, Zhi Qi
{"title":"Deciphering the molecular mechanism underlying morphology transition in two-component DNA-protein cophase separation","authors":"Cheng Li, Yunqiang Bian, Yiting Tang, Lingyu Meng, Peipei Yin, Ye Hong, Jun Cheng, Yuchen Li, Jie Lin, Chao Tang, Chunlai Chen, Wenfei Li, Zhi Qi","doi":"10.1016/j.str.2024.10.026","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.026","url":null,"abstract":"Nucleic acid and protein co-condensates exhibit diverse morphologies crucial for fundamental cellular processes. Despite many previous studies that advanced our understanding of this topic, several interesting biophysical questions regarding the underlying molecular mechanisms remain. We investigated DNA and human transcription factor p53 co-condensates—a scenario where neither dsDNA nor the protein demonstrates phase-separation behavior individually. Through a combination of experimental assays and theoretical approaches, we elucidated: (1) the phase diagram of DNA-protein co-condensates at a certain observation time, identifying a phase transition between viscoelastic fluid and viscoelastic solid states, and a morphology transition from droplet-like to “pearl chain”-like co-condensates; (2) the growth dynamics of co-condensates. Droplet-like and “pearl chain”-like co-condensates share a common initial critical microscopic cluster size at the nanometer scale during the early stage of phase separation. These findings provide important insights into the biophysical mechanisms underlying multi-component phase separation within cellular environments.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"216 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-12DOI: 10.1016/j.str.2024.10.023
Neil J. Thomson, Ulrich Zachariae
{"title":"Mechanism of negative μ-opioid receptor modulation by sodium ions","authors":"Neil J. Thomson, Ulrich Zachariae","doi":"10.1016/j.str.2024.10.023","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.023","url":null,"abstract":"Negative allosteric modulation of G-protein coupled receptors (GPCRs) by Na<sup>+</sup> ions was first described in the 1970s for opioid receptors (ORs) and has subsequently been detected for most class A GPCRs. In high-resolution structures of inactive-state class A GPCRs, a Na<sup>+</sup> ion binds to a conserved pocket near residue D2.50, whereas active-state structures of GPCRs are incompatible with Na<sup>+</sup> binding. Correspondingly, Na<sup>+</sup> diminishes agonist affinity, stabilizes the receptors in the inactive state, and reduces basal signaling. We applied a mutual-information based analysis to <em>μ</em>s-timescale biomolecular simulations of the <em>μ</em>-opioid receptor (<em>μ</em>-OR). Our results reveal that Na<sup>+</sup> binding is coupled to a water wire linking the Na<sup>+</sup> binding site with the agonist binding pocket and to rearrangements in polar networks propagating conformational changes to the agonist and G-protein binding sites. These findings provide a new mechanistic link between the presence of the ion, altered agonist affinity, receptor deactivation, and lowered basal signaling levels.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"15 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-08DOI: 10.1016/j.str.2024.10.022
Fabian Liessmann, Lukas von Bredow, Jens Meiler, Ines Liebscher
{"title":"Targeting adhesion G protein-coupled receptors. Current status and future perspectives","authors":"Fabian Liessmann, Lukas von Bredow, Jens Meiler, Ines Liebscher","doi":"10.1016/j.str.2024.10.022","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.022","url":null,"abstract":"G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors’ unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined.This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"145 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-07DOI: 10.1016/j.str.2024.10.015
Shalini Iyer, Chittaranjan Das
{"title":"Ringing the changes: Regulation of Parkin activity by different ubiquitin and ubiquitin-like proteins","authors":"Shalini Iyer, Chittaranjan Das","doi":"10.1016/j.str.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.015","url":null,"abstract":"Phosphorylation of ubiquitin and the ubiquitin-like domain of Parkin, mediated by the kinase PINK1, is essential for the liberation of the E3 ligase from its autoinhibited state. In this issue of <em>Structure</em>, Lenka et al.<span><span><sup>1</sup></span></span> provide the structural basis for the specificity and stronger Parkin activation by phospho-NEDD8 compared to phospho-ubiquitin.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"95 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-07DOI: 10.1016/j.str.2024.10.017
Wang Xu, Yang Han, Maolin Lu
{"title":"Multi-step shapeshifting of SARS-CoV-2 Omicron spikes during fusion","authors":"Wang Xu, Yang Han, Maolin Lu","doi":"10.1016/j.str.2024.10.017","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.017","url":null,"abstract":"In this issue of <em>Structure</em>, Dey et al.<span><span><sup>1</sup></span></span> employ single-molecule FRET to map the conformational trajectory of Omicron spikes during fusion, revealing a transition from pre-fusion to post-fusion through two intermediates. This study highlights the roles of acidic environments, Ca<sup>2+</sup>, and receptors in promoting SARS-CoV-2 cell entry.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"13 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-07DOI: 10.1016/j.str.2024.10.006
Taku Mizutani, Ikuro Abe
{"title":"Traces of convergent evolution left in the structure of EgtB-IV","authors":"Taku Mizutani, Ikuro Abe","doi":"10.1016/j.str.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.006","url":null,"abstract":"The enzymatically regioselective catalyzed incorporation of cysteine sulfoxide into histidine generates physiologically important antioxidants such as ergothioneine and ovothiol. In this issue of <em>Structure</em>, Ireland et al.<span><span><sup>1</sup></span></span> report the crystal structure of EgtB-IV, which provides insights into the convergent evolution of sulfoxide synthase.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"9 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-07DOI: 10.1016/j.str.2024.10.010
Qingtong Zhou, Xiao Liu, Ming-Wei Wang
{"title":"Visualizing the dual interaction of calcineurin with PI4KA and FAM126A","authors":"Qingtong Zhou, Xiao Liu, Ming-Wei Wang","doi":"10.1016/j.str.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.010","url":null,"abstract":"In this issue of <em>Structure</em>, Shaw et al.<span><span><sup>1</sup></span></span> visualize the PI4KA-TTC7B-FAM126A-calcineurin complex by combining cryo-EM, HDX-MS, and AlphaFold3, and reveal a dual interaction of calcineurin with PI4KA and FAM126A. This work promotes our understanding of calcineurin-regulated PI4KA activity and paves the way for further exploration of the roles of PI4KA in the plasma membrane.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"18 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
StructurePub Date : 2024-11-07DOI: 10.1016/j.str.2024.10.007
Rosemary J. Cater, Renae M. Ryan, Jonathan S. Oakhill, Peter Czabotar, James M. Murphy, Melissa J. Call
{"title":"Structure, function, surf, repeat: A week at Lorne Proteins 2024","authors":"Rosemary J. Cater, Renae M. Ryan, Jonathan S. Oakhill, Peter Czabotar, James M. Murphy, Melissa J. Call","doi":"10.1016/j.str.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.007","url":null,"abstract":"Since 1976, the Lorne Proteins Conference has been a key gathering for protein scientists, combining cutting-edge research with community engagement in a picturesque corner of the world. Renowned for its diverse international speakers and collaborative spirit, the conference looks forward to its 50<sup>th</sup> anniversary in 2025.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"4 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}