Benjamin J. Lane, Mariangela Dionysopoulou, Nana Yan, Jonathan D. Lippiat, Stephen P. Muench, Christos Pliotas
{"title":"机械敏感通道YbiO的电导相当于最大的门控孔","authors":"Benjamin J. Lane, Mariangela Dionysopoulou, Nana Yan, Jonathan D. Lippiat, Stephen P. Muench, Christos Pliotas","doi":"10.1016/j.str.2025.01.014","DOIUrl":null,"url":null,"abstract":"Bacterial mechanosensitive channels are divided into large (MscL) and small (MscS-like) conductance families. The function of MscS and MscL is to protect cells against osmotic shock by acting as pressure safety valves. Within the MscS-like family, <em>E</em>. <em>coli</em> encodes much larger channels, such as YbiO, MscK, and MscM, but their physiological role remains unclear. Compared to MscL their conductances are reported as 3–10 times lower. We show that YbiO can achieve a conductance of ∼3 nS, and an equivalent pore opening of > 25 Å in diameter, equaling the known largest gated pore, MscL. We determine a cryoelectron microscopy (cryo-EM) structure of YbiO in a sub-open conformation, demonstrating the existence of multiple substates. One substate is consistent with the pore opening extent of our structure and the other matches states previously thought to resemble full openings. Our findings demonstrate surprising capabilities, hinting at new physiological roles for YbiO and potentially other MscS-like channels.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"62 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanosensitive channel YbiO has a conductance equivalent to the largest gated-pore\",\"authors\":\"Benjamin J. Lane, Mariangela Dionysopoulou, Nana Yan, Jonathan D. Lippiat, Stephen P. Muench, Christos Pliotas\",\"doi\":\"10.1016/j.str.2025.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial mechanosensitive channels are divided into large (MscL) and small (MscS-like) conductance families. The function of MscS and MscL is to protect cells against osmotic shock by acting as pressure safety valves. Within the MscS-like family, <em>E</em>. <em>coli</em> encodes much larger channels, such as YbiO, MscK, and MscM, but their physiological role remains unclear. Compared to MscL their conductances are reported as 3–10 times lower. We show that YbiO can achieve a conductance of ∼3 nS, and an equivalent pore opening of > 25 Å in diameter, equaling the known largest gated pore, MscL. We determine a cryoelectron microscopy (cryo-EM) structure of YbiO in a sub-open conformation, demonstrating the existence of multiple substates. One substate is consistent with the pore opening extent of our structure and the other matches states previously thought to resemble full openings. Our findings demonstrate surprising capabilities, hinting at new physiological roles for YbiO and potentially other MscS-like channels.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.01.014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.01.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The mechanosensitive channel YbiO has a conductance equivalent to the largest gated-pore
Bacterial mechanosensitive channels are divided into large (MscL) and small (MscS-like) conductance families. The function of MscS and MscL is to protect cells against osmotic shock by acting as pressure safety valves. Within the MscS-like family, E. coli encodes much larger channels, such as YbiO, MscK, and MscM, but their physiological role remains unclear. Compared to MscL their conductances are reported as 3–10 times lower. We show that YbiO can achieve a conductance of ∼3 nS, and an equivalent pore opening of > 25 Å in diameter, equaling the known largest gated pore, MscL. We determine a cryoelectron microscopy (cryo-EM) structure of YbiO in a sub-open conformation, demonstrating the existence of multiple substates. One substate is consistent with the pore opening extent of our structure and the other matches states previously thought to resemble full openings. Our findings demonstrate surprising capabilities, hinting at new physiological roles for YbiO and potentially other MscS-like channels.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.