Surface SciencePub Date : 2024-09-14DOI: 10.1016/j.susc.2024.122606
Mahboobeh Ravankhah , Philipp Watermeyer , Gerhard Dehm , Mathias Getzlaff
{"title":"Elemental Distribution and Melting Characteristics of FeNi nanoparticles on W(110) surfaces","authors":"Mahboobeh Ravankhah , Philipp Watermeyer , Gerhard Dehm , Mathias Getzlaff","doi":"10.1016/j.susc.2024.122606","DOIUrl":"10.1016/j.susc.2024.122606","url":null,"abstract":"<div><p>In this report we describe new findings on the structure, composition and thermal stability of Fe<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> nanoparticles, synthesized via a magnetron sputtering source and deposited on a clean W(110) surface. The elemental distribution of the nanoparticles was determined by energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS). The melting behavior of the nanoparticles was studied under UHV by scanning tunneling microscopy (STM) upon heating. Notably, it has been observed that the nanoparticle’s core is characterized by an enrichment of Ni atoms, while the shell shows a higher amount of Fe atoms. Specifically, in the case of Fe<sub>0.75</sub>Ni<sub>0.25</sub> and Fe<sub>0.25</sub>Ni<sub>0.75</sub>, where a Ni core is surrounded by a Fe shell, all nanoparticles completely liquefy after heating at 540 K. In contrast, the Fe<sub>0.50</sub>Ni<sub>0.50</sub> nanoparticles, which exhibit a homogeneous distribution of both elements, only begin to melt around 540 K.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122606"},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-13DOI: 10.1016/j.susc.2024.122609
Hermann Osterhage , Abid H. Khan , Karoline Oetker , Radek Dao , Samaneh Setayandeh , Roland Wiesendanger , Patrick Burr , Stefan Krause
{"title":"Growth of an Fe buckled honeycomb lattice on Be(0001)","authors":"Hermann Osterhage , Abid H. Khan , Karoline Oetker , Radek Dao , Samaneh Setayandeh , Roland Wiesendanger , Patrick Burr , Stefan Krause","doi":"10.1016/j.susc.2024.122609","DOIUrl":"10.1016/j.susc.2024.122609","url":null,"abstract":"<div><div>The growth of Fe on a clean Be(0001) surface is investigated on the atomic scale by a combined scanning tunneling microscopy and density functional theory study. At low Fe coverage, the nucleation of terraced nanoislands with a disordered surface is observed experimentally. Increasing the Fe coverage results in the growth of extended films exhibiting a well-ordered p<span><math><mrow><mo>(</mo><mn>2</mn><mo>×</mo><mn>2</mn><mo>)</mo></mrow></math></span> superstructure. Density functional theory is applied to investigate the growth of Fe on a Be(0001) surface from individual atoms to extended films. Our studies provide strong evidence for the formation of a buckled honeycomb Fe lattice that is embedded in two Be planes with Kagome and triangular symmetry, respectively.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122609"},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-12DOI: 10.1016/j.susc.2024.122608
Buddhika S.A. Gedara, Michael Trenary
{"title":"Growth and Ag-encapsulation of Pt islands on Ag(111) at room temperature","authors":"Buddhika S.A. Gedara, Michael Trenary","doi":"10.1016/j.susc.2024.122608","DOIUrl":"10.1016/j.susc.2024.122608","url":null,"abstract":"<div><p>The growth of Pt islands at submonolayer coverages on Ag(111) at room temperature were investigated with scanning tunneling microscopy. A two-step mechanism for growth of the islands is proposed. First, Pt replaces Ag substrate atoms through a place-exchange process. Next, Pt adatoms nucleate at substitutional Pt sites and Pt islands subsequently grow from these sites. At room temperature, Ag atoms migrate to cover Pt islands, creating vacancy pits on the terraces and bays on the step edges. Ag atoms nucleate at corner sites of the Pt islands, and the layer of Ag atoms on the Pt islands grow from these sites.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122608"},"PeriodicalIF":2.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstruction of calcite (10.4) manifests itself in the tip-assisted diffusion of water","authors":"Lea Klausfering , Florian Schneider , Ralf Bechstein, Angelika Kühnle","doi":"10.1016/j.susc.2024.122598","DOIUrl":"10.1016/j.susc.2024.122598","url":null,"abstract":"<div><p>Calcite (calcium carbonate) is the most abundant carbonate in the Earth's crust. Due to its omnipresence it plays a prominent role in fields such as geochemistry, biomineralization and industrial processes. Moreover, the interaction of water with the most stable cleavage plane, calcite (10.4), has been studied intensively, elucidating atomic-scale details of water binding and structure formation on this surface. Interestingly, calcite (10.4) reconstructs under ultrahigh vacuum conditions, exhibiting a (2 × 1) surface unit cell. Although first indications of this reconstruction have been presented more than 20 years ago, a clear confirmation of the existence has been provided only very recently. Here, we study the tip-assisted diffusion of water molecules on calcite (10.4) under ultrahigh vacuum conditions. By recording images series using dynamic atomic force microscopy we follow the movement of water molecules on the surface kept at 140 K. Analyzing the change in consecutive images allows for elucidating details of the molecular movement on the surface. Most notably, the analysis reveals that water molecules occupy one type of adsorption position exclusively, while the other type is not adopted. Our analysis thus demonstrates that the (2 × 1) reconstruction manifests itself in the movement of single water molecules on this surface.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122598"},"PeriodicalIF":2.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001493/pdfft?md5=3556086ff04a23d149cbe25dcc58ffcb&pid=1-s2.0-S0039602824001493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An STM study on the diffusion of O atoms on a CO-covered Ru(0001) surface—The role of domain boundaries","authors":"Ann-Kathrin Kügler , Hannah Illner , Joost Wintterlin","doi":"10.1016/j.susc.2024.122597","DOIUrl":"10.1016/j.susc.2024.122597","url":null,"abstract":"<div><p>We investigate tracer diffusion at the domain boundaries in an adsorption layer, an effect that corresponds to grain boundary diffusion in 3D polycrystalline solids. Experiments were performed on adsorbed O atoms on a Ru(0001) surface in a layer of CO molecules. The CO molecules form a <span><math><mrow><mrow><mo>(</mo><mrow><msqrt><mn>3</mn></msqrt><mspace></mspace><mi>x</mi><mspace></mspace><msqrt><mn>3</mn></msqrt></mrow><mo>)</mo></mrow><mi>R</mi><msup><mn>30</mn><mo>∘</mo></msup></mrow></math></span> structure which displays translational domains. High-speed scanning tunneling microscopy (STM) was used to image the motion of the O atoms. The data show that single O atoms preferentially move along the domain walls which in the STM movies appear as disordered, fluctuating stripes between the ordered domains. The diffusion coefficient of the O atoms is one order of magnitude higher than the diffusion coefficient in the ordered domains. By comparison with previous experiments on completely disordered CO layers, it is concluded that the diffusion is similarly promoted by the enhanced fluctuations in the disordered domain walls.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122597"},"PeriodicalIF":2.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001481/pdfft?md5=56584dd5332ca4fc5c5a34180b11b3f8&pid=1-s2.0-S0039602824001481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-05DOI: 10.1016/j.susc.2024.122596
Bibekananda Rabha, Paritosh Mondal
{"title":"A comparative DFT study on NO2 adsorption and sensing activities of pristine, reduced and Pr3+-doped CeO2 (110) surface","authors":"Bibekananda Rabha, Paritosh Mondal","doi":"10.1016/j.susc.2024.122596","DOIUrl":"10.1016/j.susc.2024.122596","url":null,"abstract":"<div><p>Surface site activation enhances the sensing properties of the CeO<sub>2</sub> (110) surface. Herein, the adsorption of nitrogen dioxide (NO<sub>2</sub>) on pristine and modified CeO<sub>2</sub> (110) surfaces has been studied in detail using quantum chemical calculation. The introduction of the single praseodymium atom on the CeO<sub>2</sub> surface reduces its band gap from 1.93 to 0.53 eV, which in turn enhances the adsorption energy from -0.58 (pristine) to -1.34 eV (doped) and also prolongs the desorption time, indicating stronger adsorption ability. The density of states (DOS) and projected density of states (PDOS) analyses reveal that Pr doping modifies the electronic properties of the CeO<sub>2</sub> (110) surface which improves NO<sub>2</sub> sensitivity. Further, it is also observed that 0.57 eV increase in the work function for NO₂ adsorption on Pr doped CeO<sub>2</sub> surface, indicating stronger interaction compared to the pristine CeO<sub>2</sub>. In contrast, reduced CeO<sub>2</sub> surfaces do not exhibit any significant change in sensing properties. Thus, it is understood that Pr-doped CeO<sub>2</sub> (Pr/CeO<sub>2</sub>) surfaces exhibit better stability and sensitivity towards NO<sub>2</sub> adsorption compared to pristine and reduced surfaces. Therefore, this study provides insight into the rational design of advanced gas sensing materials based on modified CeO<sub>2</sub> (110) surfaces, contributing to the development of an efficient air quality monitoring system.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122596"},"PeriodicalIF":2.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400147X/pdfft?md5=da5d6fe58d0c46afcf6053356f53d89c&pid=1-s2.0-S003960282400147X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-01DOI: 10.1016/j.susc.2024.122595
Abhinav S. Raman, Annabella Selloni
{"title":"Long timescale molecular dynamics simulations of carboxylic acid-modified anatase TiO2(101)-water interfaces using ab-initio deep neural network potentials","authors":"Abhinav S. Raman, Annabella Selloni","doi":"10.1016/j.susc.2024.122595","DOIUrl":"10.1016/j.susc.2024.122595","url":null,"abstract":"<div><p>Carboxylic acid-modified anatase TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-water interfaces are widely relevant, yet understanding of their molecular scale structure is limited. To help improve this understanding, we here construct a deep neural network potential (DP) that accurately represents the potential energy surface of the formic (FA) and acetic acid (AA)-covered anatase TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(101) (A101) interfaces with water predicted by Density Functional Theory (DFT) with the SCAN exchange–correlation functional. Long time-scale (ns) Molecular Dynamics simulations employing such DP provide insight into the hydration structure at the interface, showing how the water density profile and radial distribution functions depend on the coverage and adsorption configurations of the acids. The developed model sets the stage for estimating the adsorption energetics of these small carboxylic acids on the A101 surface in an aqueous environment.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122595"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-28DOI: 10.1016/j.susc.2024.122581
Yong Han , Da-Jiang Liu , King C. Lai , Patricia A. Thiel , James W. Evans
{"title":"Formation and coarsening of epitaxially-supported metal nanoclusters","authors":"Yong Han , Da-Jiang Liu , King C. Lai , Patricia A. Thiel , James W. Evans","doi":"10.1016/j.susc.2024.122581","DOIUrl":"10.1016/j.susc.2024.122581","url":null,"abstract":"<div><div>This mini-review describes developments over the last ∼30 years in characterizing the nucleation & growth of epitaxially-supported metal nanoclusters (NCs) or islands during vapor deposition, as well as their post-deposition coarsening. A beyond-mean-field treatment for homogeneous nucleation & growth corrects the deficiencies of traditional treatments in describing, e.g., the island size distribution, but also necessitates consideration of the spatial distribution of islands and their capture zones. We discuss advances in modeling capabilities, including those based upon on an ab-initio level treatment of periphery diffusion kinetics, for description of the non-equilibrium growth shapes of these NCs, focusing on 2D NCs. For post-deposition coarsening of arrays of NCs, there is generally a competition between Ostwald Ripening (OR) and Smoluchowski Ripening (SR). SR is also known as Particle Migration & Coalescence. For 2D NCs in homoepitaxial systems, conventional OR is observed on pristine fcc(111) surfaces, dramatically enhanced OR in the presence of even trace amounts of chalcogens for Cu(111) and Ag(111), and anomalous OR on anisotropic fcc(110) surfaces. The unexpected discovery of SR for fcc(100) homoepitaxial systems prompted extensive analysis of the underlying diffusivities of 2D NCs as a function of size, as well as of NC coalescence dynamics. A comprehensive understanding of these processes is now available. Self-assembly of 3D NCs during deposition, issues related to heterogeneous nucleation, directed assembly, NC growth structure selection, and coarsening are addressed. For SR of 3D epitaxial NCs, recent insights into the size-dependence of diffusivity are described.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122581"},"PeriodicalIF":2.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-28DOI: 10.1016/j.susc.2024.122594
Chengkun Lyu , Calvin Pei Yu Wong , Yifan Gao , Xiaobo Wang , Li Huang , Kuan Eng Johnson Goh , Nian Lin
{"title":"Two-dimensional conjugated metal–organic frameworks grown on a MoS2 surface","authors":"Chengkun Lyu , Calvin Pei Yu Wong , Yifan Gao , Xiaobo Wang , Li Huang , Kuan Eng Johnson Goh , Nian Lin","doi":"10.1016/j.susc.2024.122594","DOIUrl":"10.1016/j.susc.2024.122594","url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) features an atomically flat surface without dangling bonds. Molecular self-assembly on this surface provides an effective route to constructing heterostructure devices. In this work, we show the successful synthesis of M<sub>3</sub>(1,4,5,8,9,12-hexaazatriphenylene, HAT)<sub>2</sub> (<em>M</em> = Ni, Co) conjugated metal–organic frameworks (<em>c</em>-MOFs) on a MoS<sub>2</sub> surface. In the frameworks, HAT molecules constitute a honeycomb lattice while the metal atoms constitute a Kagome lattice. The random orientations of the frameworks with respect to the substrate and irregular domain shapes indicate that the frameworks interact weakly with the MoS<sub>2</sub>. The successful synthesis of 2D <em>c</em>-MOFs on inert substrates opens a door for the construction of advanced 2D van der Waals heterojunctions.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122594"},"PeriodicalIF":2.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-26DOI: 10.1016/j.susc.2024.122591
Mengting Ma , Guili Liu , Guoying Zhang
{"title":"Modulation of monolayer SnSe2 optoelectronic properties by applied electric field and atomic doping","authors":"Mengting Ma , Guili Liu , Guoying Zhang","doi":"10.1016/j.susc.2024.122591","DOIUrl":"10.1016/j.susc.2024.122591","url":null,"abstract":"<div><p>Based on the first principles, we have calculated the influence of the applied electric field and doped X (X = N, P, As, Sb) atoms on the optoelectronic properties and phonon dispersion of the monolayer 2D material SnSe<sub>2</sub>. The calculation results show that intrinsic SnSe<sub>2</sub> is a semiconductor with a band gap value of 0.884 eV. The doping of X atoms improves the energy band tunability of the monolayer SnSe<sub>2</sub> system and becomes more stable. The N-doped SnSe<sub>2</sub> system has the most stable structure and the best doping performance. When the electric field strength of 0.3 V/Å is applied on the surface of the N-doped system, the band gap of the system increases. The energy gap gradually decreases when the electric field strength continues to increase from 0.3 V/Å to 0.9 V/Å. At an applied electric field strength of 0.9 V/Å, the system changes from semiconductor to metallic properties. As far as the optical properties are concerned, the applied electric field increases the static refractive index of the system, the imaginary part of the photoconductivity increases, the energy loss function decreases, and the light absorption performance improves. The applied electric field successfully enhanced the optical properties of the SnSe<sub>2</sub> system. The applied electric field strength of 0.9 V/Å doped N system has the best optical properties. This provides a new way to explore the optoelectronic devices based on the SnSe<sub>2</sub> doped system.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122591"},"PeriodicalIF":2.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}