Mohammad Alif Arman , Edvin Lundgren , Jan Knudsen
{"title":"The low and high coverage adsorption structure of CO on unreconstructed Ir(100)-(1×1)","authors":"Mohammad Alif Arman , Edvin Lundgren , Jan Knudsen","doi":"10.1016/j.susc.2025.122786","DOIUrl":null,"url":null,"abstract":"<div><div>The investigation of carbon monoxide (CO) adsorption on the unreconstructed Ir(100)-(1 × 1) surface under ultra-high vacuum (UHV) conditions is studied with scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and high-resolution core-level spectroscopy (HRCLS). At a low coverage of 0.5 ML (monolayer), CO molecules adopt a previously documented c(2 × 2) structure, having CO molecules adsorbed exclusively in the top sites. When the coverage increases to 0.83 ML, a c(6 × 2) phase is observed having a combination of bridge and top adsorption sites positions. A comprehensive picture of CO adsorption on Ir(100)-(1 × 1) is presented here by correlating the spectroscopic data with the observed distinct structural formations from STM and LEED.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122786"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000937","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of carbon monoxide (CO) adsorption on the unreconstructed Ir(100)-(1 × 1) surface under ultra-high vacuum (UHV) conditions is studied with scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and high-resolution core-level spectroscopy (HRCLS). At a low coverage of 0.5 ML (monolayer), CO molecules adopt a previously documented c(2 × 2) structure, having CO molecules adsorbed exclusively in the top sites. When the coverage increases to 0.83 ML, a c(6 × 2) phase is observed having a combination of bridge and top adsorption sites positions. A comprehensive picture of CO adsorption on Ir(100)-(1 × 1) is presented here by correlating the spectroscopic data with the observed distinct structural formations from STM and LEED.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.