Surface SciencePub Date : 2024-10-29DOI: 10.1016/j.susc.2024.122637
{"title":"X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando","authors":"","doi":"10.1016/j.susc.2024.122637","DOIUrl":"10.1016/j.susc.2024.122637","url":null,"abstract":"<div><div>For the 60th anniversary of Surface Science, I present here a personal account of some of the most significant contributions I have made to the field over the past three decades. The utilisation of X-rays serves as the foundation for these studies, encompassing X-ray spectroscopy for the mapping of surface chemical bonds, probing of surface reactions on ultrafast timescales, and X-ray photoelectron spectroscopy under operando conditions. The direct projection of electronic states onto the adsorbed atom allowed the detection of bonding and anti-bonding states within the d-band model. The selective probing of orbitals of different symmetries on the two atoms in adsorbed N<sub>2</sub> provided a fundamental understanding of the nature of diatomic bonding to surfaces. Ultrafast optical pumping and X-ray laser techniques allowed the study of CO undergoing desorption leading to the observation of the precursor state. Pump-probed studies of co-adsorbed CO and O on Ru enabled the means to detect transition state species during catalytic CO oxidation. The use of operando X-ray photoelectron spectroscopy at near-atmospheric pressures opened the door to probe the surface chemistry and gain insight into the reaction mechanism during hydrogenation reactions to produce ammonia, hydrocarbons, methanol and ethanol. By inserting an electrochemical cell into the spectroscopic chamber, both fuel cell and water splitting electrocatalysis could be studied giving insight about the reaction mechanism.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-28DOI: 10.1016/j.susc.2024.122635
{"title":"Adsorption and sensing performances of transition metal doped ZnO monolayer for CO and NO: A DFT study","authors":"","doi":"10.1016/j.susc.2024.122635","DOIUrl":"10.1016/j.susc.2024.122635","url":null,"abstract":"<div><div>In this study, theoretically, density functional theory was employed to explore the adsorption behavior of CO and NO prevalent hazardouss gases, on transition metal (TM = Fe, Co, Ni, and Cu) doped ZnO monolayer. The multifaceted analysis encompasses an array of critical aspects, including the adsorption structure, adsorption energy, density of states (DOS) and electron transfer to unravel the adsorption behavior. Our calculations show that TM atom doped ZnO monolayer exhibit high stability. TM doped can significantly enhance the interaction between the gas molecules (CO and NO) and the ZnO monolayer. Analysis of the recovery time and electrical conductivity of the adsorbed systems suggests that the Co-ZnO could be a suitable material for CO sensing,while the Cu-ZnO and Ni-ZnO can be used for NO sensing. These results suggest that transition metal doped can be a promising sensor candidate for toxic gas molecules adsorption and detection.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-24DOI: 10.1016/j.susc.2024.122633
{"title":"Fabrication of B-C-N nanosheets on Rh(111) from benzene – borazine mixtures","authors":"","doi":"10.1016/j.susc.2024.122633","DOIUrl":"10.1016/j.susc.2024.122633","url":null,"abstract":"<div><div>Atomic level studies of solid state surfaces performed in ultra-high vacuum (UHV) had already an energetic 15–20 years past when our research group in Szeged started working in this field in mid 1970s. Till then several very important methods had been developed, like UHV technology, commercially available electron and photoelectron spectroscopy techniques, etc. Characterization of metal and semiconductor (oxide) surfaces and their adsorption properties had already been widely studied. In any case, the last 40–50 years also witnessed great discoveries and exciting new techniques. Considering only the activity related to heterogeneous catalysis, the main focus of our research group, new breakthrough methods emerged like HREELS, RAIRS, SPM, NAPXPS, EXAFS, NEXAFS. Along this path, new experimental and theoretical approaches appeared like planar model catalysts and inverse catalysts, atomic level investigation and understanding of surface diffusion-controlled phenomena (particle growth and disruption, strong metal-support interaction (SMSI), decoration, spillover), atomic level identification of active sites, self-organized nano-systems, surface alloys and nanotemplates. It was great to participate in this magical activity for more than 50 years. Both internationally and locally in Szeged, in the last two decades, surface science has opened to the wide world of 2D materials like the semimetal graphene and the insulator hexagonal boron nitride. However, the formation of a mixed layer of C, B and N proved to be a difficult task due to the primary tendency for phase separation. In the present work, we report on a preparation method of honeycomb “BCN” materials on Rh(111) by using benzene/borazine mixtures as precursors. It was demonstrated that by a suitable choice of the growth parameters, the formation of large, separated graphene and h-BN islands can be avoided.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-22DOI: 10.1016/j.susc.2024.122632
{"title":"Growth and electronic structure of the nodal line semimetal in monolayer Cu2Si on Cu(111)","authors":"","doi":"10.1016/j.susc.2024.122632","DOIUrl":"10.1016/j.susc.2024.122632","url":null,"abstract":"<div><div>Cu<sub>2</sub>Si, a single-layer two-dimensional material with a honeycomb structure, has been proposed to have Dirac nodal line fermions. In this study, the synchrotron radiation X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (SR-XPS, SR-UPS, and SR-ARPES) techniques were used to investigate the dynamic process of in situ deposition of single-layer Cu<sub>2</sub>Si on a Cu(111) crystal surface via molecular beam epitaxy (MBE). Cu<sub>2</sub>Si existed as a monolayer (ML) alloy, and there were competing mechanisms of distinct chemical states of silicon in different growth periods, according to a detailed examination of the experimental SR-XPS and SR-UPS spectra. Additionally, a weak interaction between the Cu<sub>2</sub>Si ML and Cu(111) was demonstrated via SR-ARPES and first-principles computations. The unique electronic structure of the Cu<sub>2</sub>Si ML was not destroyed by either this weak interaction or the disordered silicon produced on the surface during the growth process. The study of the Cu<sub>2</sub>Si growth kinetics provides a guarantee and a basis for the future exploration of the exotic properties of Cu<sub>2</sub>Si.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-18DOI: 10.1016/j.susc.2024.122630
{"title":"Step-by-step silicon carbide graphitisation process study in terms of time and temperature parameters","authors":"","doi":"10.1016/j.susc.2024.122630","DOIUrl":"10.1016/j.susc.2024.122630","url":null,"abstract":"<div><div>This work investigates the temperature and time as key parameters for graphene formation on the silicon carbide surface during the high thermal decomposition process. Measurements were performed using various experimental techniques under ultra-high vacuum conditions. The graphitisation process was divided into various stages, after which the surface chemical composition and atomic structures were analysed in detail. It has been shown that despite the known theory of graphitisation mechanism and initial condition for occurrence of this process, the application of different temperatures and heating times affect the quality and quantity of formed graphene layers. Applying a temperature too low or annealing the sample for a too short time led to an inefficient silicon sublimation process. On the other hand, too high temperature during flashing modifies the visibility of surface structures, which may be crucial for other investigations and potential applications of such systems.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-17DOI: 10.1016/j.susc.2024.122627
{"title":"Imaging on surfaces with vibrational sum frequency generation microscopy","authors":"","doi":"10.1016/j.susc.2024.122627","DOIUrl":"10.1016/j.susc.2024.122627","url":null,"abstract":"<div><div>Nonlinear spectroscopy has been a valuable technique for probing surfaces for many decades. Still, in the recent past, nonlinear spectroscopy has become a useful tool for imaging monolayers on surfaces. This technique of nonlinear microscopy, more specifically sum frequency generation microscopy, provides both spectral and spatial information with varying resolution, allowing for the surface activity to be monitored and imaged. The following paper highlights the history, theory, and range of experimental advantages sum frequency generation imaging provides, focusing on specific experiments that put those advantages on display.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-17DOI: 10.1016/j.susc.2024.122629
{"title":"In air STM observation of Au(111) surface disturbance including Au magic fingers as modified by solvent choice","authors":"","doi":"10.1016/j.susc.2024.122629","DOIUrl":"10.1016/j.susc.2024.122629","url":null,"abstract":"<div><div>A widely studied surface phenomena on Au(111) is the formation of Au magic fingers, which were first discovered nearly 20 years ago. A variety of experimental conditions have been used to observe the formation of Au magic fingers with a slight preference to ultra-high vacuum and low temperature studies. With the advances in scanning probe techniques, it is possible to study these unique structures under more relevant conditions including in air and at room temperature. After exposure to a 0.1 M solvent solution, Au(111) displayed three types of surface disturbances, including the formation of Au magic fingers, based on the identity of the solvent. The type of disturbance was dependent on the solvent molecule's characteristics, specifically its total charge and its electrolytic behavior in aqueous environments. The mechanism of disturbance relied on a strong tip-surface interaction and the mass transport of Au atoms, which was modified by the solvent selected. Overall, the ability to form organized nanostructures, like Au magic fingers, in a repeated way in environments outside of UHV and without a protective liquid layer increases the utility of these structures into a wider array of fields and applied areas.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-16DOI: 10.1016/j.susc.2024.122624
{"title":"Computational insight into the selectivity of γ-valerolactone hydrodeoxygenation over Rh(111) and Ru(0001)","authors":"","doi":"10.1016/j.susc.2024.122624","DOIUrl":"10.1016/j.susc.2024.122624","url":null,"abstract":"<div><div>The observed difference in the selectivity towards alkane, ketone, and alcohol hydrodeoxygenation products over Ru and Rh catalysts is explored using a combination of density functional theory and microkinetics. Using <span><math><mi>γ</mi></math></span>-valerolactone as a model compound, we investigate the reaction mechanism in order to identify selectivity determining species. The effect of the coadsorbed water molecule as well as the higher adsorbate surface coverage on reaction barriers and energies is explored as well. The performed calculations suggest that the desired alkane product is formed from a ketone intermediate on Ru, and through both ketone and alcohol on Rh, although the selectivity towards alkane on Rh is much lower than on Ru.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-14DOI: 10.1016/j.susc.2024.122628
{"title":"Surface science studies on electron-induced reactions of NH3 and their perspectives for enhancing nanofabrication processes","authors":"","doi":"10.1016/j.susc.2024.122628","DOIUrl":"10.1016/j.susc.2024.122628","url":null,"abstract":"<div><div>Ammonia (NH<sub>3</sub>) dissociates efficiently when it interacts with an electron beam. This applies not only to single electron-NH<sub>3</sub> collisions in the gas phase but also to electron irradiation of NH<sub>3</sub> adsorbed on surfaces. The dissociation products include atomic hydrogen which can act as a reducing agent or NH<sub>2</sub> radicals that can bind to suitable surfaces or to adsorbed molecules. This chemistry can be exploited in nanofabrication processes that use electron beams for deposition, etching, or modification of materials. This review describes the current state of insight regarding electron-induced reactions of NH<sub>3</sub> adsorbed on surfaces and outlines approaches to the use of these reactions for enhancing electron beam induced nanofabrication processes. First, an overview of surface science studies on electron-induced reactions of NH<sub>3</sub> adsorbed on single crystal surfaces is given. This is followed by a summary of studies on the use of NH<sub>3</sub> for improving the purity of deposits prepared by electron beam induced deposition (EBID) and on the prospects of NH<sub>3</sub> to suppress unwanted thermal surface chemistry during EBID. Finally, we discuss electron-induced reactions of NH<sub>3</sub> that are fundamental to the modification of carbonaceous nanomaterials as well as potential application scenarios such as the functionalization of self-assembled monolayers and humidity sensing.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-12DOI: 10.1016/j.susc.2024.122626
{"title":"Electrochemical surface science: Self-assembly of Porphyrin molecules at single crystal metal electrodes","authors":"","doi":"10.1016/j.susc.2024.122626","DOIUrl":"10.1016/j.susc.2024.122626","url":null,"abstract":"<div><div>A detailed understanding of properties and processes at surfaces and interfaces requires at least two types of most basic information, <em>chemical composition and –distribution</em> as well as <em>structure.</em> While surface science in ultrahigh vacuum is blessed with a plethora of high sensitivity and highest spatial and temporal resolution due to the free accessibility of the surfaces by any kind of probe beams, investigations of solid surfaces under ambient conditions, i.e. in contact with gases or liquids, were for a long time restricted to the use of integral photon-based reflection-, absorption-, emission-, and diffraction methods. This “methodological gap” between UHV surface science and environmental interface research became immediately, at least partially, closed after the realization of the scanning tunneling microscope (STM) and following variants of proximity probes (SPM). The full applicability of this class of methods also under ambient conditions opened the door to structure information of solid-liquid interfaces of comparable resolution as in UHV at room temperature, a “quantum leap” for the understanding of e.g. interfacial electrochemistry. This, in turn, highlighted the need of reliable determination of the chemical composition and distribution at solid-liquid interfaces and pushed the development of in situ X-ray photoelectron spectroscopy (XPS).</div><div>The availability of both techniques, in situ SPM and in situ XPS closes the former methodological gap between the research in UHV and under ambient conditions. In particular, interfacial electrochemistry, being primarily interested in chemical processes at electrode/electrolyte interfaces benefits decisively of this development.</div><div>In this article, as an example, we present systematic in situ STM measurements and results on the interactions and self-assembly of porphyrins at anion modified metal/electrolyte interfaces, an important class of molecules for the functionalization of surfaces for various applications. Atomically and sub-molecularly resolved potentiostatic and potentiodynamic in situ STM images of such molecular layers are nowadays standard and wait for an in-depth theoretical analysis.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}