{"title":"Interfacial effect on the formation and properties of stable glasses","authors":"Weiduo Wang","doi":"10.1016/j.susc.2025.122813","DOIUrl":null,"url":null,"abstract":"<div><div>An in-depth understanding of the relationship between the structure and properties of physical vapor deposited (PVD) glass films is crucial for their applications at the nanoscale within industrial contexts. This study employs a coarse-grained simulation methodology to model PVD films composed of N,N-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) molecules with varying thicknesses. The findings indicate that, in contrast to liquid-quenched glasses (LQG), PVD glasses exhibit a higher elastic modulus and a lower loss modulus in the bulk, corroborating previous research that highlights enhanced mechanical stability. This work also shows that a region adjacent to the substrate of the PVD films has an exceptionally elevated elastic modulus that is correlated with changes in loss modulus, molecular orientation, and out-of-plane mobility. This phenomenon may be attributed to the surface-substrate effect resulting from the PVD process, and this effect may facilitate incoming molecule to a deeper energy state, resulting in a remarkable thermal and mechanical stability of ultrathin films.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122813"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001207","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An in-depth understanding of the relationship between the structure and properties of physical vapor deposited (PVD) glass films is crucial for their applications at the nanoscale within industrial contexts. This study employs a coarse-grained simulation methodology to model PVD films composed of N,N-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) molecules with varying thicknesses. The findings indicate that, in contrast to liquid-quenched glasses (LQG), PVD glasses exhibit a higher elastic modulus and a lower loss modulus in the bulk, corroborating previous research that highlights enhanced mechanical stability. This work also shows that a region adjacent to the substrate of the PVD films has an exceptionally elevated elastic modulus that is correlated with changes in loss modulus, molecular orientation, and out-of-plane mobility. This phenomenon may be attributed to the surface-substrate effect resulting from the PVD process, and this effect may facilitate incoming molecule to a deeper energy state, resulting in a remarkable thermal and mechanical stability of ultrathin films.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.