{"title":"贵金属(Ag, Au, Pt, Pd)掺杂单层SnSe2吸附气体分子CO","authors":"Tong Yuan , Guili Liu , Guoying Zhang","doi":"10.1016/j.susc.2025.122802","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of atomic doping of noble metals (Ag, Au, Pt, Pd) with high activity and stability on the adsorption of CO gas molecules by monolayers of SnSe<sub>2</sub> is investigated by using the first principles, which is used to effectively improve the sensitivity of monolayers of SnSe<sub>2</sub> to harmful gases. The most stable adsorption configuration of CO on the surface of the structure was found to be adsorbed with C atoms close to the crystal surface, slightly tilted, and perpendicular to the top of the hexagonal vacancies. With the embedding of noble metal atoms, the adsorption height and adsorption energy of CO on the system's surface decreased, the binding of CO on the system's surface increased, and the adsorption performance of the SnSe<sub>2</sub> system was improved. The phonon dispersion analysis shows that all systems can be formed stably. The introduction of Au and Ag atoms makes the whole adsorption system metallic. The d-orbital electrons of dopant atoms enhance hybridization between Sn-4p and Se-4s orbitals, strengthening electronic interactions. Mulliken populations analysis shows that the number of charges for CO molecules to undergo transfer increases when the surface of the doped system absorbs CO molecules, and the surface activity of the system is enhanced.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122802"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precious metal (Ag, Au, Pt, Pd) doped monolayer SnSe2 adsorption of gas molecules CO\",\"authors\":\"Tong Yuan , Guili Liu , Guoying Zhang\",\"doi\":\"10.1016/j.susc.2025.122802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of atomic doping of noble metals (Ag, Au, Pt, Pd) with high activity and stability on the adsorption of CO gas molecules by monolayers of SnSe<sub>2</sub> is investigated by using the first principles, which is used to effectively improve the sensitivity of monolayers of SnSe<sub>2</sub> to harmful gases. The most stable adsorption configuration of CO on the surface of the structure was found to be adsorbed with C atoms close to the crystal surface, slightly tilted, and perpendicular to the top of the hexagonal vacancies. With the embedding of noble metal atoms, the adsorption height and adsorption energy of CO on the system's surface decreased, the binding of CO on the system's surface increased, and the adsorption performance of the SnSe<sub>2</sub> system was improved. The phonon dispersion analysis shows that all systems can be formed stably. The introduction of Au and Ag atoms makes the whole adsorption system metallic. The d-orbital electrons of dopant atoms enhance hybridization between Sn-4p and Se-4s orbitals, strengthening electronic interactions. Mulliken populations analysis shows that the number of charges for CO molecules to undergo transfer increases when the surface of the doped system absorbs CO molecules, and the surface activity of the system is enhanced.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"761 \",\"pages\":\"Article 122802\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602825001098\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001098","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Precious metal (Ag, Au, Pt, Pd) doped monolayer SnSe2 adsorption of gas molecules CO
The effect of atomic doping of noble metals (Ag, Au, Pt, Pd) with high activity and stability on the adsorption of CO gas molecules by monolayers of SnSe2 is investigated by using the first principles, which is used to effectively improve the sensitivity of monolayers of SnSe2 to harmful gases. The most stable adsorption configuration of CO on the surface of the structure was found to be adsorbed with C atoms close to the crystal surface, slightly tilted, and perpendicular to the top of the hexagonal vacancies. With the embedding of noble metal atoms, the adsorption height and adsorption energy of CO on the system's surface decreased, the binding of CO on the system's surface increased, and the adsorption performance of the SnSe2 system was improved. The phonon dispersion analysis shows that all systems can be formed stably. The introduction of Au and Ag atoms makes the whole adsorption system metallic. The d-orbital electrons of dopant atoms enhance hybridization between Sn-4p and Se-4s orbitals, strengthening electronic interactions. Mulliken populations analysis shows that the number of charges for CO molecules to undergo transfer increases when the surface of the doped system absorbs CO molecules, and the surface activity of the system is enhanced.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.