Analyzing the capture of volatile polonium-210 in lead-bismuth eutectic coolant environments on metallic Pb, Pt, Au, and Cu (1 1 1) adsorption surfaces based on density functional theory
{"title":"Analyzing the capture of volatile polonium-210 in lead-bismuth eutectic coolant environments on metallic Pb, Pt, Au, and Cu (1 1 1) adsorption surfaces based on density functional theory","authors":"Yu Yang , Wei Zuo , Mingzhang Lin","doi":"10.1016/j.susc.2025.122805","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses density functional theory (DFT) to investigate the adsorption of volatile polonium species (Po, Po<sub>2</sub>, PbPo, H<sub>2</sub>Po, and PoOH) on Pd, Pt, Au, and Cu (1 1 1) surfaces, critical for capturing radioactive polonium in lead-bismuth eutectic (LBE) nuclear coolants. Geometric optimizations and adsorption energy calculations show Pd and Pt (1 1 1) surfaces exhibit superior adsorption for most species: monatomic Po adsorbs strongest on Pd (−3.95 eV) via covalent/orbital hybridization; Po<sub>2</sub> and PbPo form stable dissociative/cooperative bonds on Pd/Pt; H<sub>2</sub>Po shows weak physisorption on Au/Cu due to limited orbital overlap; PoOH favors Pt through hydrogen bonding and O-M interactions. Electron density changes (Δρ(r)) and partial density of states (PDOS) confirm strong chemisorption with electron accumulation and orbital hybridization, aligning with frontier orbital theory predictions. Adsorption trends follows the order of Pd/Pt > Cu > Au and the adsorption reactivity of Po species on the Pd(1 1 1) surfaces occur most spontaneously within LBE coolant operation temperature highlight Pd as promising for filter materials, providing a theoretical basis for mitigating polonium volatility in advanced nuclear systems.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122805"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001128","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses density functional theory (DFT) to investigate the adsorption of volatile polonium species (Po, Po2, PbPo, H2Po, and PoOH) on Pd, Pt, Au, and Cu (1 1 1) surfaces, critical for capturing radioactive polonium in lead-bismuth eutectic (LBE) nuclear coolants. Geometric optimizations and adsorption energy calculations show Pd and Pt (1 1 1) surfaces exhibit superior adsorption for most species: monatomic Po adsorbs strongest on Pd (−3.95 eV) via covalent/orbital hybridization; Po2 and PbPo form stable dissociative/cooperative bonds on Pd/Pt; H2Po shows weak physisorption on Au/Cu due to limited orbital overlap; PoOH favors Pt through hydrogen bonding and O-M interactions. Electron density changes (Δρ(r)) and partial density of states (PDOS) confirm strong chemisorption with electron accumulation and orbital hybridization, aligning with frontier orbital theory predictions. Adsorption trends follows the order of Pd/Pt > Cu > Au and the adsorption reactivity of Po species on the Pd(1 1 1) surfaces occur most spontaneously within LBE coolant operation temperature highlight Pd as promising for filter materials, providing a theoretical basis for mitigating polonium volatility in advanced nuclear systems.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.