Om Shree Rijal, Hari Krishna Neupane, Pitamber Shrestha, Shriram Sharma, Leela Pradhan Joshi, Rajendra Parajuli
{"title":"First-principles study on the adsorption behavior of ZnO and Mn-doped ZnO with CO and NH3 gases","authors":"Om Shree Rijal, Hari Krishna Neupane, Pitamber Shrestha, Shriram Sharma, Leela Pradhan Joshi, Rajendra Parajuli","doi":"10.1016/j.susc.2025.122810","DOIUrl":null,"url":null,"abstract":"<div><div>The present work investigates the structural, electronic, and magnetic properties of a (3 × 3 × 1) supercell monolayer of Mn doped ZnO (Mn-ZnO), CO adsorbed on ZnO (CO-ZnO), NH<sub>3</sub> adsorbed on ZnO (NH<sub>3</sub>-ZnO), and CO & NH<sub>3</sub> adsorbed on Mn-ZnO (CO-Mn-ZnO, & NH<sub>3</sub>−Mn-ZnO) structures. Density functional theory (DFT) method with a projected augmented basis set has been used for this study, by employing two different exchange-correlation functionals: GGA-PBE and GGA-PBE+<em>U</em> through the Vienna-Ab-intio Simulation Package (VASP) software. We analyzed the lattice parameters, which reveal that doping Mn into ZnO, and adsorbing NH<sub>3</sub> and CO molecules on both ZnO and Mn-ZnO result in changes to the lattice parameters. Thus, the adsorbed molecules alter the lattice parameters, suggesting that both ZnO and Mn-ZnO have the ability to detect poisonous gases. Moreover, we also studied the band gap energy of considered materials using two functionals, PBE and PBE+<em>U</em>. The obtained band gap energies are closer to the experimental values when applying the PBE+<em>U</em> functional. Lastly, pristine ZnO, as well as CO, and NH<sub>3</sub> adsorbed ZnO (CO-ZnO, & NH<sub>3</sub>-ZnO), are found to be non-magnetic, whereas Mn-ZnO, along with CO, and NH<sub>3</sub> adsorbed Mn-ZnO (CO-Mn-ZnO, & NH<sub>3</sub>−Mn-ZnO) are found to be magnetic. Based on electronic and magnetic properties, considered materials are suited for sensing devices.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122810"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001177","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present work investigates the structural, electronic, and magnetic properties of a (3 × 3 × 1) supercell monolayer of Mn doped ZnO (Mn-ZnO), CO adsorbed on ZnO (CO-ZnO), NH3 adsorbed on ZnO (NH3-ZnO), and CO & NH3 adsorbed on Mn-ZnO (CO-Mn-ZnO, & NH3−Mn-ZnO) structures. Density functional theory (DFT) method with a projected augmented basis set has been used for this study, by employing two different exchange-correlation functionals: GGA-PBE and GGA-PBE+U through the Vienna-Ab-intio Simulation Package (VASP) software. We analyzed the lattice parameters, which reveal that doping Mn into ZnO, and adsorbing NH3 and CO molecules on both ZnO and Mn-ZnO result in changes to the lattice parameters. Thus, the adsorbed molecules alter the lattice parameters, suggesting that both ZnO and Mn-ZnO have the ability to detect poisonous gases. Moreover, we also studied the band gap energy of considered materials using two functionals, PBE and PBE+U. The obtained band gap energies are closer to the experimental values when applying the PBE+U functional. Lastly, pristine ZnO, as well as CO, and NH3 adsorbed ZnO (CO-ZnO, & NH3-ZnO), are found to be non-magnetic, whereas Mn-ZnO, along with CO, and NH3 adsorbed Mn-ZnO (CO-Mn-ZnO, & NH3−Mn-ZnO) are found to be magnetic. Based on electronic and magnetic properties, considered materials are suited for sensing devices.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.